Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37177199

RESUMO

Biodegradable polymers are desirable to mitigate the environmental impact of plastic waste in the environment. Over the past several decades, the development of organocatalytic ring-opening polymerization (OROP) has made the synthesis of many new types of biodegradable polymers possible. In this research article, the first example of an oxygen atom transfer reagent pendant on a biodegradable polymer backbone is reported. The monomers for the polycarbonate backbone are sourced from the biodegradable 2,2-bis(hydroxymethyl) propionic acid molecule, and an iodoaryl group is installed pendant to the cyclic monomer for post-polymerization modification into an iodosylaryl oxygen atom transfer reagent. The key I-O bond is characterized by XPS spectroscopy, and a test reaction to triphenylphosphine demonstrates the ability of the polymer to engage in an oxygen atom transfer reaction with a substrate.

2.
J Org Chem ; 86(3): 2667-2681, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33448846

RESUMO

The stereoselective synthesis of terminal bromo-substituted propargylamines via in situ generation of lithium bromoacetylide from 1,2-dibromoethene and addition to Ellman chiral N-tert-butanesulfinyl aldimines is reported. Modest to good yields (43-85%) and diastereoselectivity (dr = 3:1 to >20:1) were achieved for a range of aryl, heteroaryl, alkyl, and α,ß-unsaturated substrates. Terminal bromo-substituted propargylamines prepared via this method can be directly used in the frequently employed Cadiot-Chodkiewicz coupling to produce functionalized diynes. The method reported here increases the structural diversity of chiral terminal bromo-substituted propargylamines that can be readily synthesized as previous methods for the stereoselective synthesis of these compounds rely on amino acid precursors from the chiral pool.


Assuntos
Iminas , Lítio , Pargilina/análogos & derivados , Propilaminas , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...