Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 176(3): e14322, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38818614

RESUMO

Understanding the potato tuber development and effects of drought at key stages of sensitivity on yield is crucial, particularly when considering the increasing incidence of drought due to climate change. So far, few studies addressed the time course of tuber growth in soil, mainly due to difficulties in accessing underground plant organs in a non-destructive manner. This study aims to understand the tuber growth and quality and the complex long-term effects of realistic water stress on potato tuber yield. MRI was used to monitor the growth kinetics and spatialization of individual tubers in situ and the evolution of internal defects throughout the development period. The intermittent drought applied to plants reduced tuber yield by reducing tuber growth and increasing the number of aborted tubers. The reduction in the size of tubers depended on the vertical position of the tubers in the soil, indicating water exchanges between tubers and the mother plant during leaf dehydration events. The final size of tubers was linked with the growth rate at specific developmental periods. For plants experiencing stress, this corresponded to the days following rewatering, suggesting tuber growth plasticity. All internal defects occurred in large tubers and within a short time span immediately following a period of rapid growth of perimedullary tissues, probably due to high nutrient requirements. To conclude, the non-destructive 3D imaging by MRI allowed us to quantify and better understand the kinetics and spatialization of tuber growth and the appearance of internal defects under different soil water conditions.


Assuntos
Imageamento por Ressonância Magnética , Tubérculos , Solanum tuberosum , Água , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/fisiologia , Tubérculos/crescimento & desenvolvimento , Tubérculos/fisiologia , Imageamento por Ressonância Magnética/métodos , Água/metabolismo , Desidratação , Secas , Cinética , Estresse Fisiológico , Folhas de Planta/fisiologia , Folhas de Planta/crescimento & desenvolvimento
2.
Plants (Basel) ; 11(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35893622

RESUMO

The potato is one of the most cultivated crops worldwide, providing an important source of food. The quality of potato tubers relates to their size and dry matter composition and to the absence of physiological defects. It depends on the spatial and temporal coordination of growth and metabolic processes in the major tuber tissues: the cortex, flesh and pith. In the present study, variations in the biochemical traits of each of these tissues were investigated during tuber growth under optimal and water-deficit conditions. MRI relaxometry was used as a non-invasive and quantitative method to access information on cellular water status. The presence of slight but significant variations in organic compound contents quantified in the cortex and flesh revealed a tissue-dependent metabolic pattern. The T2 and relative I0 of the bi-exponential relaxation signal allowed a distinction to be made between the pith and the cortex, whereas the flesh could be differentiated from these tissues only through its relative I0. T2 values did not vary significantly during tuber development, in accordance with the typical growth pattern of tubers, but were shown to be sensitive to water stress. The interpretation of the multi-exponential transverse relaxation times is discussed and could be further developed via microscopic analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...