Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 93(42): 14076-14087, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34636233

RESUMO

We present a novel spectroscopy accessory that can easily convert any Fourier transform infrared (FTIR) spectrometer into a fully automated mapping and assaying system. The accessory uses a multiridge attenuated total reflection (ATR) wafer as the sensing element coupled with a moving aperture that is used to select the regions of interest on the wafer. In this demonstration, the accessory is combined with a series of parallel micropatterned channels, which are positioned co-linear with the light-coupling ridges on the opposite side of the ATR wafer. The ATR spectroscopy microfluidic assay accessory (ASMAA) was used in continuous mapping mode to scan perpendicular to the ATR ridges, revealing complex but repeatable oscillations in the spectral intensities. To understand this behavior, the light path through the optical components was simulated with consideration of the aperture position, ridge-to-channel alignment, and excitation beam profile. With this approach, the simulation reproduced the experimental mapping results and provided evidence that the measurement position and area changed with the aperture position. To demonstrate the assay mode, we obtained spectra along the centerline of individual microchannels and determined noise baselines and limits of detection.


Assuntos
Microfluídica , Análise de Fourier , Cintilografia , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Anal Chem ; 90(24): 14475-14483, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30449089

RESUMO

A fully automated linear scanning attenuated total reflection (ATR) accessory is presented for Fourier transform infrared (FTIR) spectroscopy. The approach is based on the accurate displacement of a multibounce ATR crystal relative to a stationary infrared beam. To ensure accurate positioning and to provide a second sample characterization mode, a custom-built microscope was integrated into the system and the computerized work flow. Custom software includes automated control and measurement routines with a straightforward user interface for selecting parameters and monitoring experimental progress. This cost-effective modular system can be implemented on any research-grade spectrometer with a standard sample compartment for new bioanalytical chemistry studies. The system was validated and optimized for use with microfluidic flow cells containing growing Pseudomonas sp. bacterial biofilms. The complementarity among the scan positioning accuracy, measurement spatial resolution, and the microchannel dimensions paves the way for parallel biological assays with real-time control over environmental parameters and minimal manual labor. By rotating the channel orientation relative to the beam path, the system could also be used for acquisition of linear biochemical maps and stitched microscope images along the channel length.


Assuntos
Biofilmes , Microscopia/métodos , Pseudomonas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Biofilmes/crescimento & desenvolvimento , Microfluídica , Microscopia/instrumentação , Pseudomonas/fisiologia , Reprodutibilidade dos Testes , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...