Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (200)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37955392

RESUMO

Trypanosomiasis is a significant public health problem in several regions across the world, including South Asia and Southeast Asia. The identification of hotspot areas under active surveillance is a fundamental procedure for controlling disease transmission. Microscopic examination is a commonly used diagnostic method. It is, nevertheless, primarily reliant on skilled and experienced personnel. To address this issue, an artificial intelligence (AI) program was introduced that makes use of a hybrid deep learning technique of object identification and object classification neural network backbones on the in-house low-code AI platform (CiRA CORE). The program can identify and classify the protozoan trypanosome species, namely Trypanosoma cruzi, T. brucei, and T. evansi, from oil-immersion microscopic images. The AI program utilizes pattern recognition to observe and analyze multiple protozoa within a single blood sample and highlights the nucleus and kinetoplast of each parasite as specific characteristic features using an attention map. To assess the AI program's performance, two unique modules are created that provide a variety of statistical measures such as accuracy, recall, specificity, precision, F1 score, misclassification rate, receiver operating characteristics (ROC) curves, and precision versus recall (PR) curves. The assessment findings show that the AI algorithm is effective at identifying and categorizing parasites. By delivering a speedy, automated, and accurate screening tool, this technology has the potential to transform disease surveillance and control. It could also assist local officials in making more informed decisions on disease transmission-blocking strategies.


Assuntos
Aprendizado Profundo , Parasitos , Trypanosoma , Animais , Inteligência Artificial , Redes Neurais de Computação
2.
Sci Rep ; 13(1): 10609, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391476

RESUMO

Mosquito-borne diseases such as dengue fever and malaria are the top 10 leading causes of death in low-income countries. Control measure for the mosquito population plays an essential role in the fight against the disease. Currently, several intervention strategies; chemical-, biological-, mechanical- and environmental methods remain under development and need further improvement in their effectiveness. Although, a conventional entomological surveillance, required a microscope and taxonomic key for identification by professionals, is a key strategy to evaluate the population growth of these mosquitoes, these techniques are tedious, time-consuming, labor-intensive, and reliant on skillful and well-trained personnel. Here, we proposed an automatic screening, namely the deep metric learning approach and its inference under the image-retrieval process with Euclidean distance-based similarity. We aimed to develop the optimized model to find suitable miners and suggested the robustness of the proposed model by evaluating it with unseen data under a 20-returned image system. During the model development, well-trained ResNet34 are outstanding and no performance difference when comparing five data miners that showed up to 98% in its precision even after testing the model with both image sources: stereomicroscope and mobile phone cameras. The robustness of the proposed-trained model was tested with secondary unseen data which showed different environmental factors such as lighting, image scales, background colors and zoom levels. Nevertheless, our proposed neural network still has great performance with greater than 95% for sensitivity and precision, respectively. Also, the area under the ROC curve given the learning system seems to be practical and empirical with its value greater than 0.960. The results of the study may be used by public health authorities to locate mosquito vectors nearby. If used in the field, our research tool in particular is believed to accurately represent a real-world scenario.


Assuntos
Telefone Celular , Culicidae , Trabalho de Parto , Animais , Feminino , Gravidez , Aprendizagem , Processos Grupais
3.
Sci Rep ; 11(1): 16919, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34413434

RESUMO

The infection of an avian malaria parasite (Plasmodium gallinaceum) in domestic chickens presents a major threat to the poultry industry because it causes economic loss in both the quality and quantity of meat and egg production. Computer-aided diagnosis has been developed to automatically identify avian malaria infections and classify the blood infection stage development. In this study, four types of deep convolutional neural networks, namely Darknet, Darknet19, Darknet19-448 and Densenet201 are used to classify P. gallinaceum blood stages. We randomly collected a dataset of 12,761 single-cell images consisting of three parasite stages from ten-infected blood films stained by Giemsa. All images were confirmed by three well-trained examiners. The study mainly compared several image classification models and used both qualitative and quantitative data for the evaluation of the proposed models. In the model-wise comparison, the four neural network models gave us high values with a mean average accuracy of at least 97%. The Darknet can reproduce a superior performance in the classification of the P. gallinaceum development stages across any other model architectures. Furthermore, the Darknet has the best performance in multiple class-wise classification, with average values of greater than 99% in accuracy, specificity, and sensitivity. It also has a low misclassification rate (< 1%) than the other three models. Therefore, the model is more suitable in the classification of P. gallinaceum blood stages. The findings could help us create a fast-screening method to help non-experts in field studies where there is a lack of specialized instruments for avian malaria diagnostics.


Assuntos
Estágios do Ciclo de Vida , Malária Aviária/sangue , Malária Aviária/parasitologia , Redes Neurais de Computação , Parasitos/crescimento & desenvolvimento , Plasmodium gallinaceum/crescimento & desenvolvimento , Animais , Área Sob a Curva , Modelos Biológicos , Curva ROC
4.
IEEE Trans Nanobioscience ; 11(2): 125-30, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22411056

RESUMO

In this paper, the novel type of transistor known as a hybrid transistor is proposed, in which all types of transistors can be formed by using a microring resonator called a PANDA microring resonator. In principle, such a transistor can be used to form for various transistor types by using the atom/molecule trapping tools, which is named by an optical tweezer, where in application all type of transistors, especially, molecule and photon transistors can be performed by using the trapping tools, which will be described in details.


Assuntos
Nanotecnologia/instrumentação , Pinças Ópticas , Transistores Eletrônicos , Computadores Moleculares , Fótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...