Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 310: 122633, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38810387

RESUMO

Reactive oxygen species (ROS) that are overproduced in certain tumors can be considered an indicator of oxidative stress levels in the tissue. Here, we report a magnetic resonance imaging (MRI)-based probe capable of detecting ROS levels in the tumor microenvironment (TME) using ROS-responsive manganese ion (Mn2+)-chelated, biotinylated bilirubin nanoparticles (Mn@bt-BRNPs). These nanoparticles are disrupted in the presence of ROS, resulting in the release of free Mn2+, which induces T1-weighted MRI signal enhancement. Mn@BRNPs show more rapid and greater MRI signal enhancement in high ROS-producing A549 lung carcinoma cells compared with low ROS-producing DU145 prostate cancer cells. A pseudo three-compartment model devised for the ROS-reactive MRI probe enables mapping of the distribution and concentration of ROS within the tumor. Furthermore, doxorubicin-loaded, cancer-targeting ligand biotin-conjugated Dox/Mn@bt-BRNPs show considerable accumulation in A549 tumors and also effectively inhibit tumor growth without causing body weight loss, suggesting their usefulness as a new theranostic agent. Collectively, these findings suggest that Mn@bt-BRNPs could be used as an imaging probe capable of detecting ROS levels and monitoring drug delivery in the TME with potential applicability to other inflammatory diseases.


Assuntos
Doxorrubicina , Sistemas de Liberação de Medicamentos , Imageamento por Ressonância Magnética , Espécies Reativas de Oxigênio , Microambiente Tumoral , Microambiente Tumoral/efeitos dos fármacos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Animais , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Doxorrubicina/uso terapêutico , Imageamento por Ressonância Magnética/métodos , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Manganês/química , Linhagem Celular Tumoral , Células A549 , Camundongos , Camundongos Nus , Masculino , Camundongos Endogâmicos BALB C
2.
Adv Mater ; 36(24): e2305830, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38459924

RESUMO

Despite the vital importance of monitoring the progression of nonalcoholic fatty liver disease (NAFLD) and its progressive form, nonalcoholic steatohepatitis (NASH), an efficient imaging modality that is readily available at hospitals is currently lacking. Here, a new magnetic-resonance-imaging (MRI)-based imaging modality is presented that allows for efficient and longitudinal monitoring of NAFLD and NASH progression. The imaging modality uses manganese-ion (Mn2+)-chelated bilirubin nanoparticles (Mn@BRNPs) as a reactive-oxygen-species (ROS)-responsive MRI imaging probe. Longitudinal T1-weighted MR imaging of NASH model mice is performed after injecting Mn@BRNPs intravenously. The MR signal enhancement in the liver relative to muscle gradually increases up to 8 weeks of NASH progression, but decreases significantly as NASH progresses to the cirrhosis-like stage at weeks 10 and 12. A new dual input pseudo-three-compartment model is developed to provide information on NASH stage with a single MRI scan. It is also demonstrated that the ROS-responsive Mn@BRNPs can be used to monitor the efficacy of potential anti-NASH drugs with conventional MRI. The findings suggest that the ROS-responsive Mn@BRNPs have the potential to serve as an efficient MRI contrast for monitoring NASH progression and its transition to the cirrhosis-like stage.


Assuntos
Bilirrubina , Progressão da Doença , Cirrose Hepática , Imageamento por Ressonância Magnética , Nanopartículas , Hepatopatia Gordurosa não Alcoólica , Espécies Reativas de Oxigênio , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Animais , Imageamento por Ressonância Magnética/métodos , Camundongos , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Cirrose Hepática/diagnóstico por imagem , Meios de Contraste/química , Manganês/química , Humanos , Fígado/diagnóstico por imagem , Fígado/patologia , Fígado/metabolismo , Modelos Animais de Doenças
3.
Adv Mater ; : e2311283, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489768

RESUMO

Organ-selective drug delivery is expected to maximize the efficacy of various therapeutic modalities while minimizing their systemic toxicity. Lipid nanoparticles and polymersomes can direct the organ-selective delivery of mRNAs or gene editing machineries, but their delivery is limited to mostly liver, spleen, and lung. A platform that enables delivery to these and other target organs is urgently needed. Here, a library of glycocalyx-mimicking nanoparticles (GlyNPs) comprising five randomly combined sugar moieties is generated, and direct in vivo library screening is used to identify GlyNPs with preferential biodistribution in liver, spleen, lung, kidneys, heart, and brain. Each organ-targeting GlyNP hit show cellular tropism within the organ. Liver, kidney, and spleen-targeting GlyNP hits equipped with therapeutics effectively can alleviate the symptoms of acetaminophen-induced liver injury, cisplatin-induced kidney injury, and immune thrombocytopenia in mice, respectively. Furthermore, the differential organ targeting of GlyNP hits is influenced not by the protein corona but by the sugar moieties displayed on their surface. It is envisioned that the GlyNP-based platform may enable the organ- and cell-targeted delivery of therapeutic cargoes.

4.
Adv Healthc Mater ; 13(6): e2300549, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37931205

RESUMO

Tumor-associated macrophages (TAMs)-representative immune-suppressive cells in the tumor microenvironment (TME)-are known to promote tumor progression and metastasis, and thus are considered an attractive target for cancer therapy. However, current TAM-targeting strategies are insufficient to result in robust antitumor efficacy. Here, a small lipid nanoparticle encapsulating immunostimulatory CpG oligodeoxynucleotides (SLNP@CpG) is reported as a new immunotherapeutic modality that can reprogram TAMs and further bridge innate-to-adaptive immunity. It is found that SLNP@CpG treatment enhances macrophage-mediated phagocytosis of cancer cells and tumor antigen cross-presentation, and skews the polarization state of macrophages in vitro. Intratumoral injection of SLNP@CpG into an established murine E.G7-OVA tumor model significantly suppresses tumor growth and considerably prolongs survival, completely eradicating tumors in 83.3% of mice. Furthermore, tumor-free mice resist rechallenge with E.G7-OVA cancer cells through induction of immunological memory and long-term antitumor immunity. SLNP@CpG even exerts antitumor efficacy in an aggressive B16-F10 melanoma model by remodeling TME toward immune stimulation and tumor elimination. These findings suggest that, by modulating the function of TAMs and reshaping an immunosuppressive TME, the SLNP@CpG nanomedicine developed here may become a promising immunotherapeutic option applicable to a variety of tumors.


Assuntos
Melanoma Experimental , Macrófagos Associados a Tumor , Animais , Camundongos , Memória Imunológica , Imunização , Macrófagos , Imunidade Adaptativa , Melanoma Experimental/tratamento farmacológico , Microambiente Tumoral
5.
BMC Cancer ; 23(1): 831, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37670250

RESUMO

BACKGROUND: Heterogeneous tumor cells are thought to be a significant factor in the failure of endocrine therapy in estrogen receptor-positive (ER+) cancers. Culturing patient-derived breast cancer cells (PDBCCs) provides an invaluable tool in pre-clinical and translational research for the heterogeneity of cancer cells. This study aimed to investigate the effects of different media components and culture methods on the BCSC-associated immunophenotypes and gene expression in ER + PDBCCs. METHODS: Ten patients with ER + breast cancer were employed in this study, six of whom had neoadjuvant chemotherapy and four of whom did not. PDBCCs were isolated by enzymatic methods using collagen I and hyaluronidase. PDBCCs were grown as monolayers in mediums with different compositions and as multicellular spheroid in a suspended condition. Collagen I-coated plate and ultralow attachment plate coated with polymer-X were used for monolayer and spheroid culture. Flow cytometry, immunofluorescent staining, RT-PCR, and RNA-sequencing were employed to examine the immunophenotype and genetic profile of PDBCCs. RESULTS: More than 95% of PDBCCs sustain EpCAM high/+/fibroblast marker- phenotypes in monolayer conditions by subculturing 3-4 times. A83-01 removal induced senescent cells with high ß-galactosidase activity. PDBCCs grown as monolayers were characterized by the majority of cells having an EpCAM+/CD49f + phenotype. Compared to full media in monolayer culture, EGF removal increased EpCAM+/CD49f - phenotype (13.8-fold, p = 0.028), whereas R-spondin removal reduced it (0.8-fold, p = 0.02). A83-01 removal increased EpCAM+/CD24 + phenotype (1.82-fold, p = 0.023) and decreased EpCAM low/-/CD44+/CD24- phenotype (0.45-fold, p = 0.026). Compared to monolayer, spheroid resulted in a significant increase in the population with EpCAM-/CD49+ (14.6-fold, p = 0.006) and EpCAM low/-/CD44+/CD24- phenotypes (4.16-fold, p = 0.022) and ALDH high activity (9.66-fold, p = 0.037). ALDH1A and EMT-related genes were upregulated. In RNA-sequencing analysis between spheroids and monolayers, a total of 561 differentially expressed genes (2-fold change, p < 0.05) were enriched in 27 KEGG pathways including signaling pathways regulating pluripotency of stem cells. In a recurrence-free survival analysis based on the Kaplan-Meier Plotter database of the up-and down-regulated genes identified in spheroids, 15 up-, and 14 down-regulated genes were associated with poor prognosis of breast cancer patients. CONCLUSION: The media composition and spheroid culture method change in the BCSCs and EMT markers of PDBCCs, implying the importance of defining the media composition and culture method for studying PDBCCs in vitro.


Assuntos
Colágeno Tipo I , Neoplasias , Molécula de Adesão da Célula Epitelial , Integrina alfa6 , RNA
6.
Angew Chem Int Ed Engl ; 62(34): e202304815, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37310766

RESUMO

Common medications for treating inflammatory bowel disease (IBD) have limited therapeutic efficacy and severe adverse effects. This underscores the urgent need for novel therapeutic approaches that can effectively target inflamed sites in the gastrointestinal tract upon oral administration, exerting potent therapeutic efficacy while minimizing systemic effects. Here, we report the construction and in vivo therapeutic evaluation of a library of anti-inflammatory glycocalyx-mimicking nanoparticles (designated GlyNPs) in a mouse model of IBD. The anti-inflammatory GlyNP library was created by attaching bilirubin (BR) to a library of glycopolymers composed of random combinations of the five most naturally abundant sugars. Direct in vivo screening of 31 BR-attached anti-inflammatory GlyNPs via oral administration into mice with acute colitis led to identification of a candidate GlyNP capable of targeting macrophages in the inflamed colon and effectively alleviating colitis symptoms. These findings suggest that the BR-attached GlyNP library can be used as a platform to identify anti-inflammatory nanomedicines for various inflammatory diseases.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Nanopartículas , Animais , Camundongos , Glicocálix , Colite/tratamento farmacológico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
7.
ACS Nano ; 17(11): 10337-10352, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37184372

RESUMO

Cancer-associated fibroblasts (CAFs), which are dominant cell types in the tumor microenvironment (TME), support tumor growth by secreting cytokines and forming an extracellular matrix (ECM) that hampers the penetration of chemical and biological therapeutics within the tumor and thereby limits their therapeutic efficacy. Here, we report a cancer nanovaccine targeting fibroblast activation protein α (FAP)-expressing CAFs as a potential pan-tumor vaccine. We predicted immunodominant FAP-specific epitope peptides in silico and selected two candidate peptides after in vitro and in vivo screening for immunogenicity and antitumor efficacy. Next, we developed a nanoparticle-based vaccine that displays the two selected epitope peptides on the surface of lipid nanoparticles encapsulating CpG adjuvant (FAPPEP-SLNPs). Immunization with one of two FAPPEP-SLNP nanovaccines led to considerable growth inhibition of various tumors, including desmoplastic tumors, by depleting FAP+ CAFs and thereby reducing ECM production in the TME while causing little appreciable adverse effects. Furthermore, when combined with a chemotherapeutic drug, the FAPPEP-SLNP nanovaccine increased drug accumulation and resulted in a synergistic antitumor efficacy far better than that of each corresponding monotherapy. These findings suggest that our FAPPEP-SLNP nanovaccine has potential for use as an "off-the-shelf" pan-tumor vaccine applicable to a variety of tumors and may be a suitable platform for use in various combination therapies.


Assuntos
Vacinas Anticâncer , Fibroblastos Associados a Câncer , Neoplasias , Humanos , Serina Endopeptidases/metabolismo , Epitopos de Linfócito T/metabolismo , Epitopos de Linfócito T/farmacologia , Neoplasias/terapia , Fibroblastos Associados a Câncer/metabolismo , Microambiente Tumoral , Linhagem Celular Tumoral
8.
ACS Nano ; 17(11): 10996-11013, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37227087

RESUMO

Inflammatory bowel disease (IBD) manifests as intestinal barrier destruction, mucosal immunity dysregulation, and disrupted gut microbiome homeostasis. Conventional anti-inflammatory medications for IBD therapy partially alleviate symptoms but are unable to restore normal barrier and immune function. Here, we report a nanomedicine comprising bilirubin (BR)-attached low-molecular-weight, water-soluble chitosan nanoparticles (LMWC-BRNPs), that promotes restoration of the intestinal barrier, mucosal immunity, and the gut microbiome, thereby exerting robust therapeutic efficacy. In a mouse model of dextran sulfate sodium salt (DSS)-induced colitis, orally administered LMWC-BRNPs were retained in the GI tract much longer than other nonmucoadhesive BRNPs owing to the mucoadhesiveness of LMWC via electrostatic interaction. Treatment with LMWC-BRNPs led to considerable recovery of the damaged intestinal barrier compared with the current IBD medication, 5-aminosalicylic acid (5-ASA). Orally administered LMWC-BRNPs were taken up by pro-inflammatory macrophages and inhibited their activity. They also concurrently increased the population of regulatory T cells, thereby leading to the recovery of dysregulated mucosal immunity. An analysis of the gut microbiome revealed that LMWC-BRNPs treatment significantly attenuated the increase Turicibacter, an inflammation-related microorganism, resulting in protection of gut microbiome homeostasis. Taken together, our findings indicate that LMWC-BRNPs restored normal functions of the intestine and have high potential for use as a nanomedicine for IBD therapy.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Camundongos , Bilirrubina/farmacologia , Nanomedicina , Imunidade nas Mucosas , Colite/induzido quimicamente , Colite/tratamento farmacológico , Intestinos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo
9.
Adv Drug Deliv Rev ; 191: 114620, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36379406

RESUMO

Metals are indispensable for the activities of all living things, from single-celled organisms to higher organisms, including humans. Beyond their intrinsic quality as metal ions, metals help creatures to maintain requisite biological processes by forming coordination complexes with endogenous ligands that are broadly distributed in nature. These types of naturally occurring chelating reactions are found through the kingdoms of life, including bacteria, plants and animals. Mimicking these naturally occurring coordination complexes with intrinsic biocompatibility may offer an opportunity to develop nanomedicine toward clinical applications. Herein, we introduce representative examples of naturally occurring coordination complexes in a selection of model organisms and highlight such bio-inspired metal-chelating nanomaterials for theranostic applications.


Assuntos
Complexos de Coordenação , Nanopartículas Metálicas , Nanopartículas , Animais , Humanos , Medicina de Precisão , Quelantes/uso terapêutico , Metais , Nanomedicina Teranóstica
10.
Biomedicines ; 10(11)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36359204

RESUMO

Cancer stem-like cells (CSCs) are considered promising targets for anti-cancer therapy owing to their role in tumor progression. Extensive research is, therefore, being carried out on CSCs to identify potential targets for anti-cancer therapy. However, this requires the availability of patient-derived CSCs ex vivo, which remains restricted due to the low availability and diversity of CSCs. To address this limitation, a functional polymer thin-film (PTF) platform was invented to induce the transformation of cancer cells into tumorigenic spheroids. In this study, we demonstrated the functionality of a new PTF, polymer X, using a streamlined production process. Polymer X induced the formation of tumor spheroids with properties of CSCs, as revealed through the upregulated expression of CSC-related genes. Signal transducer and activator of transcription 3 (STAT3) phosphorylation in the cancer cells cultured on polymer X was upregulated by the fibronectin-integrin α5-Janus kinase 2 (JAK2) axis and maintained by the cytosolic LMO2/LBD1 complex. In addition, STAT3 signaling was critical in spheroid formation on polymer X. Our PTF platform allows the efficient generation of tumor spheroids from cancer cells, thereby overcoming the existing limitations of cancer research.

11.
Mol Ther Oncolytics ; 26: 1-14, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35784401

RESUMO

Patients with BRAFV600E-mutant melanoma are effectively treated with the BRAF-inhibiting drug, vemurafenib, but soon develop drug resistance, limiting vemurafenib's therapeutic efficacy. Constitutive activation of STAT3 in cancer cells and immune cells in the tumor microenvironment (TME) is a crucial contributor to the development of drug resistance and immune evasion in most cancers. Here, we investigated the antitumor efficacy and TME remodeling by APTSTAT3-9R, a cell-permeable STAT3 inhibitory peptide, as a strategy to treat vemurafenib-resistant melanoma. We found that vemurafenib-resistant melanoma remodels into immunosuppressive TME by increasing the expression of specific chemokines to facilitate the infiltration of immunosuppressive immune cells, such as myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs). Intratumoral treatment of APTSTAT3-9R led to a reduction in the population of MDSCs and TAMs, while increasing infiltration of cytotoxic T lymphocytes in the TME. Moreover, combination therapy with APTSTAT3-9R and an anti-PD-1 antibody enhanced significant suppression of tumor growth by decreasing infiltration of these immunosuppressive immune cells while increasing the infiltration and cytotoxicity of CD8+ T cells. These findings suggest that combined blockade of STAT3 and PD-1 signaling pathways may be an effective treatment option for overcoming poor therapeutic outcomes associated with drug-resistant BRAF-mutant melanoma.

12.
Front Immunol ; 13: 893659, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720391

RESUMO

Allogeneic stem cell transplantation is a curative immunotherapy where patients receive myeloablative chemotherapy and/or radiotherapy, followed by donor stem cell transplantation. Graft versus host disease (GVHD) is a major complication caused by dysregulated donor immune system, thus a novel strategy to modulate donor immunity is needed to mitigate GVHD. Tissue damage by conditioning regimen is thought to initiate the inflammatory milieu that recruits various donor immune cells for cross-priming of donor T cells against alloantigen and eventually promote strong Th1 cytokine storm escalating further tissue damage. Bilirubin nanoparticles (BRNP) are water-soluble conjugated of bilirubin and polyethylene glycol (PEG) with potent anti-inflammatory properties through its ability to scavenge reactive oxygen species generated at the site of inflammation. Here, we evaluated whether BRNP treatment post-transplantation can reduce initial inflammation and subsequently prevent GVHD in a major histocompatibility (MHC) mismatched murine GVHD model. After myeloablative irradiation, BALB/c mice received bone marrow and splenocytes isolated from C57BL/6 mice, with or without BRNP (10 mg/kg) daily on days 0 through 4 post-transplantation, and clinical GVHD and survival was monitored for 90 days. First, BRNP treatment significantly improved clinical GVHD score compared to untreated mice (3.4 vs 0.3, p=0.0003), and this translated into better overall survival (HR 0.0638, p=0.0003). Further, BRNPs showed a preferential accumulation in GVHD target organs leading to a reduced systemic and local inflammation evidenced by lower pathologic GVHD severity as well as circulating inflammatory cytokines such as IFN-γ. Lastly, BRNP treatment post-transplantation facilitated the reconstitution of CD4+ iNK T cells and reduced expansion of proinflammatory CD8α+ iNK T cells and neutrophils especially in GVHD organs. Lastly, BRNP treatment decreased ICOS+ or CTLA-4+ T cells but not PD-1+ T cells suggesting a decreased level of T cell activation but maintaining T cell tolerance. In conclusion, we demonstrated that BRNP treatment post-transplantation ameliorates murine GVHD via diminishing the initial tissue damage and subsequent inflammatory responses from immune subsets.


Assuntos
Doença Enxerto-Hospedeiro , Nanopartículas , Animais , Bilirrubina , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/prevenção & controle , Humanos , Imunoterapia/efeitos adversos , Inflamação/complicações , Camundongos , Camundongos Endogâmicos C57BL , Transplante Homólogo/efeitos adversos
13.
Adv Mater ; 34(30): e2203993, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35639412

RESUMO

Cancer-targeting ligands used for nanomedicines have been limited mostly to antibodies, peptides, aptamers, and small molecules thus far. Here, a library of glycocalyx-mimicking nanoparticles as a platform to enable screening and identification of cancer-targeting nanomedicines is reported. Specifically, a library of 31 artificial glycopolymers composed of either homogeneous or heterogeneous display of five different sugar moieties (ß-glucose, ß-galactose, α-mannose, ß-N-acetyl glucosamine, and ß-N-acetyl galactosamine) is converted to a library of glyconanoparticles (GlyNPs). GlyNPs optimal for targeting CT26, DU145, A549, and PC3 tumors are systematically screened and identified. The cypate-conjugated GlyNP displaying α-mannose and ß-N-acetyl glucosamine show selective targeting and potent photothermal therapeutic efficacy against A549 human lung tumors. The docetaxel-contained GlyNP displaying ß-glucose, ß-galactose, and α-mannose demonstrate targeted chemotherapy against DU145 human prostate tumors. The results presented herein collectively demonstrate that the GlyNP library is a versatile platform enabling the identification of cancer-targeting glyconanoparticles and suggest its potential applicability for targeting various diseased cells beyond cancer.


Assuntos
Manose , Neoplasias , Detecção Precoce de Câncer , Galactose , Glucosamina , Glucose , Humanos , Masculino , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico
14.
ACS Omega ; 7(12): 10526-10538, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35382299

RESUMO

The risk of fomite-mediated transmission in the clinic is substantially increasing amid the recent COVID-19 pandemic as personal protective equipment (PPE) of hospital workers is easily contaminated by direct contact with infected patients. In this context, it is crucial to devise a means to reduce such transmission. Herein, we report an antimicrobial, antiviral, and antibiofouling trifunctional polymer that can be easily coated onto the surface of medical protective clothing to effectively prevent pathogen contamination on the PPE. The coating layer is formed on the surfaces of PPE by the simple spray coating of an aqueous solution of the trifunctional polymer, poly(dodecyl methacrylate (DMA)-poly(ethylene glycol) methacrylate (PEGMA)-quaternary ammonium (QA)). To establish an optimal ratio of antifouling and antimicrobial functional groups, we performed antifouling, antibacterial, and antiviral tests using four different ratios of the polymers. Antifouling and bactericidal results were assessed using Staphylococcus aureus, a typical pathogenic bacterium that induces an upper respiratory infection. Regardless of the molar ratio, polymer-coated PPE surfaces showed considerable antiadhesion (∼65-75%) and antibacterial (∼75-87%) efficacies soon after being in contact with pathogens and maintained their capability for at least 24 h, which is sufficient for disposable PPEs. Further antiviral tests using coronaviruses showed favorable results with PPE coated at two specific ratios (3.5:6:0.5 and 3.5:5.5:1) of poly(DMA-PEGMA-QA). Moreover, biocompatibility assessments using the two most effective polymer ratios showed no recognizable local or systemic inflammatory responses in mice, suggesting the potential of this polymer for immediate use in the field.

15.
Anal Chem ; 94(15): 5875-5882, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35389207

RESUMO

Affinity chromatography utilizing specific interactions between therapeutic proteins and bead-immobilized capturing agents is a standard method for protein purification, but its scalability is limited by long purification times, activity loss by the capturing molecules and/or purified protein, and high costs. Here, we report a platform for purifying therapeutic antibodies via affinity precipitation using the endogenous calcium ion-binding protein, calsequestrin (CSQ), which undergoes a calcium ion-dependent phase transition. In this method, ZZ-CSQ fusion proteins with CSQ and an affinity protein (Z domain of protein A) capture antibodies and undergo multimerization and subsequent aggregation in response to calcium ions, enabling the antibody to be collected by affinity precipitation. After robustly validating and optimizing the performance of the platform, the ZZ-CSQ platform can rapidly purify therapeutic antibodies from industrial harvest feedstock with high purity (>97%) and recovery yield (95% ± 3%). In addition, the ZZ-CSQ platform outperforms protein A-based affinity chromatography (PAC) in removing impurities, yielding ∼20-fold less DNA and ∼4.8-fold less host cell protein (HCP) contamination. Taken together, this platform is rapid, recyclable, scalable, and cost-effective, and it shows antibody-purification performance superior or comparable to that of the standard affinity chromatography method.


Assuntos
Cálcio , Calsequestrina , Anticorpos/metabolismo , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio , Calsequestrina/química , Calsequestrina/genética , Calsequestrina/metabolismo , Cromatografia de Afinidade/métodos , Proteína Estafilocócica A/metabolismo
16.
Adv Drug Deliv Rev ; 182: 114134, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35122881

RESUMO

Photoimaging and phototherapy have become major platforms for the diagnosis and treatment of various health complications. These applications require a photosensitizer (PS) that is capable of absorbing light from a source and converting it into other energy forms for detection and therapy. While synthetic inorganic materials such as quantum dots and gold nanorods have been widely explored for their medical diagnosis and photodynamic (PDT) and photothermal (PTT) therapy capabilities, translation of these technologies has lagged, primarily owing to potential cytotoxicity and immunogenicity issues. Of the various photoreactive molecules, the naturally occurring endogenous compound heme, a constituent of red blood cells, and its derivatives, porphyrin, biliverdin and bilirubin, have shown immense potential as noteworthy candidates for clinically translatable photoreactive agents, as evidenced by previous reports. While porphyrin-based photomedicines have attracted significant attention and are well documented, research on photomedicines based on two other heme-derived compounds, biliverdin and bilirubin, has been relatively lacking. In this review, we summarize the unique photoproperties of heme-derived compounds and outline recent efforts to use them in biomedical imaging and phototherapy applications.


Assuntos
Diagnóstico por Imagem/métodos , Heme/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Fototerapia/métodos , Heme/administração & dosagem , Heme/farmacocinética , Humanos , Sistemas de Liberação de Fármacos por Nanopartículas , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/farmacocinética , Porfirinas/administração & dosagem , Porfirinas/farmacologia
17.
J Am Heart Assoc ; 10(20): e021212, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34622671

RESUMO

Background Ischemia/reperfusion (I/R) injury causes overproduction of reactive oxygen species, which are the major culprits of oxidative stress that leads to inflammation, apoptosis, myocardial damage, and dysfunction. Bilirubin acts as a potent endogenous antioxidant that is capable of scavenging various reactive oxygen species. We have previously generated bilirubin nanoparticles (BRNPs) consisting of polyethylene glycol-conjugated bilirubin. In this study, we examined the therapeutic effects of BRNPs on myocardial I/R injury in mice. Methods and Results In vivo imaging using fluorophore encapsulated BRNPs showed BRNPs preferentially targeted to the site of I/R injury in the heart. Cardiac I/R surgery was performed by first ligating the left anterior descending coronary artery. After 45 minutes, reperfusion was achieved by releasing the ligation. BRNPs were administered intraperitoneally at 5 minutes before and 24 hours after reperfusion. Mice that received BRNPs showed significant improvements in their cardiac output, assessed by echocardiogram and pressure volume loop measurements, compared with the ones that received vehicle treatment. BRNPs treatment also significantly reduced the myocardial infarct size in mice that underwent cardiac I/R, compared with the vehicle-treatment group. In addition, BRNPs effectively suppressed reactive oxygen species and proinflammatory factor levels, as well as the amount of cardiac apoptosis. Conclusions Taken together, BRNPs could exert their therapeutic effects on cardiac I/R injury through attenuation of oxidative stress, apoptosis, and inflammation, providing a novel therapeutic modality for myocardial I/R injury.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Nanopartículas , Animais , Apoptose , Bilirrubina , Inflamação , Camundongos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Estresse Oxidativo , Espécies Reativas de Oxigênio
18.
Acc Chem Res ; 54(18): 3576-3592, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34406761

RESUMO

Most therapeutic peptides available on the market today are naturally occurring hormones or protein fragments that were serendipitously discovered to possess therapeutic effects. However, the limited repertoire of available natural resources presents difficulties for the development of new peptide drug candidates. Traditional peptides possess several shortcomings that must be addressed for biomedical applications, including relatively low affinity or specificity toward biological targets compared to antibody- and protein scaffold-based affinity molecules, poor in vivo stability owing to rapid enzymatic degradation, and rapid clearance from circulation owing to their small size. Going forward, it will be increasingly important for scientists to develop novel classes of high-affinity and -specificity peptides against desired targets that mitigate these limitations while remaining compatible with pharmaceutical manufacturing processes. Recently, several highly constrained, artificial cyclic peptides have emerged as platforms capable of generating high-affinity peptide binders against various disease-associated protein targets by combining with phage or mRNA display method, some of which have entered clinical trials. In contrast, although linear peptides are relatively easy to synthesize cost-effectively and modify site-specifically at either N- or C-termini compared to cyclic peptides, there have been few linear peptide-based platforms that can provide high-affinity and -specificity peptide binders.In this Account, we describe the creation and development of a novel class of high-affinity peptides, termed "aptide"-from the Latin word "aptus" meaning "to fit" and "peptide"-and summarize their biomedical applications. In the first part, we consider the design and creation of aptides, with a focus on their unique structural features and binding mode, and address screening and identification of target protein-specific aptides. We also discuss advantages of the aptide platform over ordinary linear peptides lacking preorganized structures in terms of the affinity and specificity of identified peptide binders against target molecules. In the second part, we describe the potential biomedical applications of various target-specific aptides, ranging from imaging and therapy to theranostics, according to the types of aptides and diseases. We show that certain aptides can not only bind to a target protein but also inhibit its biological function, thereby showing potential as therapeutics per se. Further, aptides specific for cancer-associated protein antigens can be used as escort molecules or targeting ligands for delivery of chemotherapeutics, cytokine proteins, and nanomedicines, such as liposomes and magnetic particles, to tumors, thereby substantially improving therapeutic effects. Finally, we present a strategy capable of overcoming the critical issue of short blood circulation time associated with most peptides by constructing a hybrid system between an aptide and a hapten cotinine-specific antibody.


Assuntos
Nanomedicina , Peptídeos/metabolismo , Animais , Anticorpos/química , Anticorpos/metabolismo , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Retinopatia Diabética/tratamento farmacológico , Humanos , Cinética , Magnetismo , Camundongos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Peptídeos/química , Peptídeos/uso terapêutico , Estrutura Terciária de Proteína , Fator de Transcrição STAT3/química , Transplante Heterólogo , Fator A de Crescimento do Endotélio Vascular/química
19.
Biomaterials ; 275: 120986, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34175563

RESUMO

Pulmonary fibrosis is an irreparable and life-threatening disease with only limited therapeutic options. The recent outbreak of COVID-19 has caused a sharp rise in the incidence of pulmonary fibrosis owing to SARS-CoV-2 infection-mediated acute respiratory distress syndrome (ARDS). The considerable oxidative damage caused by locally infiltrated immune cells plays a crucial role in ARDS, suggesting the potential use of antioxidative therapeutics. Here, we report the therapeutic potential of nanoparticles derived from the endogenous antioxidant and anti-inflammatory bile acid, bilirubin (BRNPs), in treating pulmonary fibrosis in a bleomycin-induced mouse model of the disease. Our results demonstrate that BRNPs can effectively reduce clinical signs in mice, as shown by histological, disease index evaluations, and detection of biomarkers. Our findings suggest that BRNPs, with their potent antioxidant and anti-inflammatory effects, long blood circulation half-life, and preferential accumulation at the inflamed site, are potentially a viable clinical option for preventing Covid-19 infection-associated pulmonary fibrosis.


Assuntos
COVID-19 , Fibrose Pulmonar , Animais , Bilirrubina , Humanos , Camundongos , Nanomedicina , Fibrose Pulmonar/tratamento farmacológico , SARS-CoV-2
20.
Biomaterials ; 275: 120926, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34147723

RESUMO

Despite the potential of photothermal therapy (PTT) for cancer treatments, PTT alone has limitations in treating metastatic tumors and preventing tumor recurrence, highlighting the need to combine PTT with immunotherapy. This study reports tumor microenvironment (TME)-targeting, near-infrared (NIR) dye derivative-based nanomedicine for effective combined PTT-immunotherapy. Amphiphilic NIR dye cyanine derivatives are used not only for constructing the nanoparticle mass, but also for creating a stable complex with CpG adjuvant; a peptide specific to fibronectin extra domain B (APTEDB) is also introduced as a TME-targeting ligand, yielding the TME-targeting nanomedicine, APTEDB-cyNP@CpG. APTEDB-cyNP@CpG shows cancer-targeting ability in EDB-overexpressing CT26 colon tumor-bearing mice. When combined with laser irradiation, it induces immunogenic cell death (ICD) and subsequently leads to significant increase in CD8+ T cell population in the tumor, resulting in greater antitumor therapeutic efficacy than does cyNP@CpG lacking the TME-targeting ligand. Moreover, the combination of APTEDB-cyNP@CpG-based PTT and an immune checkpoint blockade (ICB) antibody leads to remarkable antitumor efficacy against the laser-irradiated primary tumor as well as distant tumor through potentiation of systemic cancer cell-specific T cell immunity. Furthermore, the PTT-immunotherapy combination regimen is highly effective in inhibiting tumor recurrence and metastasis.


Assuntos
Nanopartículas , Microambiente Tumoral , Animais , Linhagem Celular Tumoral , Imunoterapia , Camundongos , Nanomedicina , Recidiva Local de Neoplasia , Fototerapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...