Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Haematol ; 201(3): 459-469, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36535585

RESUMO

The effective prophylaxis and treatment of central nervous system (CNS) involvement in acute lymphoblastic leukaemia (ALL) remains a significant clinical challenge. Developing novel and more effective CNS-directed therapies has been hampered, in part, by our limited understanding of the leukaemia niche in the CNS relative to the bone marrow. Accordingly, defining the molecular and cellular components critical for the establishment and maintenance of the CNS leukaemia niche may lead to new therapeutic opportunities. In prior work we showed that direct intercellular interactions between leukaemia and meningeal cells enhance leukaemia chemoresistance in the CNS. Herein, we show that the CXCR4/CXCL12 chemokine axis contributes to leukaemia-meningeal cell adhesion. Importantly, clinically tested CXCR4 antagonists, which are likely to cross the blood-brain and blood-cerebral spinal fluid barriers and penetrate the CNS, effectively disrupted leukaemia-meningeal cell adhesion. Moreover, by disrupting these intercellular interactions, CXCR4 antagonists attenuated leukaemia chemoresistance in leukaemia-meningeal cell co-culture experiments and enhanced the efficacy of cytarabine in targeting leukaemia cells in the meninges in vivo. This work identifies the CXCR4/CXCL12 axis as an important regulator of intercellular interactions within the CNS leukaemia niche and supports further testing of the therapeutic efficacy of CXCR4 antagonists in overcoming CNS niche-mediated chemoresistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Leucemia , Humanos , Adesão Celular , Transdução de Sinais , Receptores CXCR4/metabolismo , Quimiocina CXCL12/metabolismo , Meninges
2.
PLoS One ; 17(1): e0261770, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35077450

RESUMO

Progressive immune deficiency of aging is characterized by severe thymic atrophy, contracted T cell repertoire, and poor immune function. p63 is critical for the proliferative potential of embryonic and adult stem cells, as well as thymic epithelial cells (TECs). Because p63 null mice experience rapid post-natal lethality due to epidermal and limb morphogenesis defects, studies to define a role for p63 expression in TEC biology focused on embryonic thymus development and in vitro experiments. Since post-natal thymic stromal development and function differs from that of the embryo, we assessed the impact of lineage-restricted p63 loss on pre- and post-natal murine TEC function by generating mice with a loss of p63 function targeted to TEC, termed p63TECko mice. In adult p63TECko mice, severe thymic hypoplasia was observed with a lack in a discernable segregation into medullary and cortical compartments and peripheral T cell lymphopenia. This profound thymic defect was seen in both neonatal as well as embryonic p63TECko mice. In addition to TECs, p63 also plays in important role in the development of stratified epithelium of the skin; lack of p63 results in defects in skin epidermal stratification and differentiation. Interestingly, all adult p63TECko mice lacked hair follicles despite having normal p63 expression in the skin. Together our results show a critical role of TEC p63 in thymic development and maintenance and show that p63 expression is critical for hair follicle formation.


Assuntos
Alopecia/genética , Fatores de Transcrição Forkhead/genética , Deleção de Genes , Técnicas de Inativação de Genes , Regiões Promotoras Genéticas , Timo/crescimento & desenvolvimento , Transativadores/deficiência , Alopecia/metabolismo , Animais , Fatores de Transcrição Forkhead/metabolismo , Camundongos , Camundongos Knockout , Transativadores/metabolismo
3.
Sci Rep ; 11(1): 24374, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34934147

RESUMO

Central nervous system (CNS) relapse is a significant cause of treatment failure among patients with acute lymphoblastic leukemia. In prior work we found that the meninges, the thin layer of tissue that covers the brain and spinal cord, harbor leukemia cells in the CNS. Importantly, direct interactions between leukemia and meningeal cells enabled leukemia chemoresistance. Herein, we show that an antibody targeting CD99, a transmembrane protein expressed on meningeal cells and many leukemia cells, disrupts adhesion between leukemia and meningeal cells and restores sensitivity of the leukemia cells to chemotherapy. This work identifies a mechanism regulating critical intercellular interactions within the CNS leukemia niche and may lead to novel therapeutic approaches for overcoming niche-mediated chemoresistance.


Assuntos
Antígeno 12E7/imunologia , Anticorpos Monoclonais/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Meníngeas/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Humanos , Neoplasias Meníngeas/imunologia , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Células Tumorais Cultivadas
5.
Br J Haematol ; 189(3): 513-517, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31930492

RESUMO

Central nervous system (CNS) relapse is a common cause of treatment failure in patients with acute lymphoblastic leukaemia (ALL) despite current CNS-directed therapies that are also associated with significant short- and long-term toxicities. Herein, we showed that leukaemia cells exhibit decreased proliferation, elevated reactive oxygen species (ROS) and increased cell death in cerebral spinal fluid (CSF) both in vitro and in vivo. However, interactions between leukaemia and meningeal cells mitigated these adverse effects. This work expands our understanding of the pathophysiology of CNS leukaemia and suggests novel therapeutic approaches for more effectively targeting leukaemia cells in the CNS.


Assuntos
Meninges/fisiopatologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/líquido cefalorraquidiano , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Análise de Sobrevida
6.
Haematologica ; 105(8): 2130-2140, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31624109

RESUMO

Protection from acute lymphoblastic leukemia relapse in the central nervous system (CNS) is crucial to survival and quality of life for leukemia patients. Current CNS-directed therapies cause significant toxicities and are only partially effective. Moreover, the impact of the CNS microenvironment on leukemia biology is poorly understood. In this study we showed that leukemia cells associated with the meninges of xenotransplanted mice, or co-cultured with meningeal cells, exhibit enhanced chemoresistance due to effects on both apoptosis balance and quiescence. From a mechanistic standpoint, we found that leukemia chemoresistance is primarily mediated by direct leukemia-meningeal cell interactions and overcome by detaching the leukemia cells from the meninges. Next, we used a co-culture adhesion assay to identify drugs that disrupted leukemia-meningeal adhesion. In addition to identifying several drugs that inhibit canonical cell adhesion targets we found that Me6TREN (Tris[2-(dimethylamino)ethyl]amine), a novel hematopoietic stem cell-mobilizing compound, also disrupted leukemia-meningeal adhesion and enhanced the efficacy of cytarabine in treating CNS leukemia in xenotransplanted mice. This work demonstrates that the meninges exert a critical influence on leukemia chemoresistance, elucidates mechanisms of relapse beyond the well-described role of the blood-brain barrier, and identifies novel therapeutic approaches for overcoming chemoresistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Leucemia , Animais , Sistema Nervoso Central , Citarabina , Humanos , Leucemia/tratamento farmacológico , Camundongos , Qualidade de Vida , Microambiente Tumoral
7.
PLoS One ; 13(4): e0193461, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29617362

RESUMO

Chemotherapy or chemoradiotherapy conditioning regimens required for bone marrow transplantation (BMT) cause significant morbidity and mortality as a result of insufficient immune surveillance mechanisms leading to increased risks of infection and tumor recurrence. Such conditioning causes host stromal cell injury, impairing restoration of the central (thymus) and peripheral (spleen and lymph node) T cell compartments and slow immune reconstitution. The chemokine, CCL21, produced by host stromal cells, recruits T- and B-cells that provide lymphotoxin mediated instructive signals to stromal cells for lymphoid organogenesis. Moreover, T- and B-cell recruitment into these sites is required for optimal adaptive immune responses to pathogens and tumor antigens. Previously, we reported that CCL21 was markedly reduced in secondary lymphoid organs of transplanted animals. Here, we utilized adenoviral CCL21 gene transduced dendritic cells (DC/CCL21) given by footpad injections as a novel approach to restore CCL21 expression in secondary lymphoid organs post-transplant. CCL21 expression in secondary lymphoid organs reached levels of naïve controls and resulted in increased T cell trafficking to draining lymph nodes (LNs). An increase in both lymphoid tissue inducer cells and the B cell chemokine CXCL13 known to be important in LN formation was observed. Strikingly, only mice vaccinated with DC/CCL21 loaded with bacterial, viral or tumor antigens and not recipients of DC/control adenovirus loaded cells or no DCs had a marked increase in the systemic clearance of pathogens (bacteria; virus) and leukemia cells. Because DC/CCL21 vaccines have been tested in clinical trials for patients with lung cancer and melanoma, our studies provide the foundation for future trials of DC/CCL21 vaccination in patients receiving pre-transplant conditioning regimens.


Assuntos
Transplante de Medula Óssea , Quimiocina CCL21/genética , Vetores Genéticos/genética , Transdução Genética , Adenoviridae/genética , Animais , Transplante de Medula Óssea/métodos , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/genética , Vacinas Anticâncer/uso terapêutico , Linhagem Celular Tumoral , Quimiocina CCL21/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Expressão Gênica , Vetores Genéticos/uso terapêutico , Humanos , Linfonodos/imunologia , Camundongos Endogâmicos C57BL , Vacinação
8.
Bioconjug Chem ; 29(4): 1111-1118, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29412642

RESUMO

The limited delivery of chemotherapy agents to cancer cells and the nonspecific action of these agents are significant challenges in oncology. We have previously developed a customizable drug delivery and activation system in which a nucleic acid functionalized gold nanoparticle (Au-NP) delivers a drug that is selectively activated within a cancer cell by the presence of an mRNA unique to the cancer cell. The amount of drug released from sequestration to the Au-NP is determined by both the presence and the abundance of the cancer cell specific mRNA in a cell. We have now developed this technology for the potent, but difficult to deliver, topoisomerase I inhibitor SN-38. Herein, we demonstrate both the efficient delivery and selective release of SN-38 from gold nanoparticles in Ewing sarcoma cells with resulting efficacy in vitro and in vivo. These results provide further preclinical validation for this novel cancer therapy and may be extendable to other cancers that exhibit sensitivity to topoisomerase I inhibitors.


Assuntos
Antineoplásicos/farmacologia , Ouro/química , Irinotecano/farmacologia , Nanopartículas Metálicas/química , RNA Mensageiro/metabolismo , Sarcoma de Ewing/genética , Inibidores da Topoisomerase I/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Técnicas In Vitro , Irinotecano/química , Irinotecano/farmacocinética , Inibidores da Topoisomerase I/química , Inibidores da Topoisomerase I/farmacocinética
9.
Haematologica ; 102(4): e136-e139, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28034988
10.
Bone ; 47(1): 12-22, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20233612

RESUMO

Despite palliative treatments, tumor-induced bone disease (TIBD) remains highly debilitating for many cancer patients and progression typically results in death within two years. Therefore, more effective therapies with enhanced anti-resorptive and cytotoxic characteristics are needed. We developed bisphosphonate-chemotherapeutic conjugates designed to bind bone and hydrolyze, releasing both compounds, thereby targeting both osteoclasts and tumor cells. This study examined the effects of our lead compound, MBC-11 (the anhydride formed between arabinocytidine (AraC)-5'-phosphate and etidronate), on bone tumor burden, bone volume, femur bone mineral density (BMD), and overall survival using two distinct mouse models of TIBD, the 4T1/luc breast cancer and the KAS-6/1-MIP1alpha multiple myeloma models. In mice orthotopically inoculated with 4T1/luc mouse mammary cells, MBC-11 (0.04 microg/day; s.c.) reduced the incidence of bone metastases to 40% (4/10), compared to 90% (9/10; p=0.057) and 100% (5/5; p=0.04) of PBS- or similarly-dosed, zoledronate-treated mice, respectively. MBC-11 also significantly decreased bone tumor burden compared to PBS- or zoledronate-treated mice (p=0.021, p=0.017, respectively). MBC-11 and zoledronate (0.04 microg/day) significantly increased bone volume by two- and four-fold, respectively, compared to PBS-treated mice (p=0.005, p<0.001, respectively). In mice systemically injected with human multiple myeloma KAS-6/1-MIP1alpha cells, 0.04 and 4.0 microg/day MBC-11 improved femur BMD by 13% and 16%, respectively, compared to PBS (p=0.025, p=0.017, respectively) at 10 weeks post-tumor cell injection and increased mean survival to 95 days compared to 77 days in mice treated with PBS (p=0.047). Similar doses of zoledronate also improved femur BMD (p< or =0.01 vs PBS) and increased mean survival to 86 days, but this was not significantly different than in PBS-treated mice (p=0.53). These results demonstrate that MBC-11 decreases bone tumor burden, maintains bone structure, and may increase overall survival, warranting further investigation as a treatment for TIBD.


Assuntos
Antimetabólitos/uso terapêutico , Doenças Ósseas/tratamento farmacológico , Doenças Ósseas/etiologia , Difosfonatos/uso terapêutico , Neoplasias/complicações , Nucleosídeos/uso terapêutico , Animais , Antimetabólitos/farmacologia , Densidade Óssea/efeitos dos fármacos , Doenças Ósseas/fisiopatologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Osso e Ossos/fisiopatologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Difosfonatos/química , Difosfonatos/farmacologia , Humanos , Estimativa de Kaplan-Meier , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Mieloma Múltiplo/patologia , Transplante de Neoplasias , Nucleosídeos/farmacologia , Tamanho do Órgão/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Clin Cancer Res ; 11(10): 3722-32, 2005 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-15897569

RESUMO

PURPOSE: We examined the feasibility of using molecular characterization of circulating tumor cells as a method for early detection of breast cancer. RESEARCH DESIGN: Women without a prior history of cancer who had a breast abnormality detected on imaging followed by a breast biopsy were enrolled in this study. Density gradient centrifugation and immunomagnetic capture were used to enrich for epithelial cells from approximately 20 mL of blood. Real-time reverse transcription-PCR was used to quantitate the expression levels of the highly breast-specific genes, mammaglobin, gamma-aminobutyric acid type A receptor pi subunit (GABA A(pi)), B305D-C, and B726P in the epithelial cell-enriched samples. RESULTS: The assay was technically feasible in 154 of 199 accrued patients. From their clinical assessment, 100 patients had benign breast disease, 10 patients had ductal carcinoma in situ, and 44 patients had invasive breast cancer. We constructed a diagnostic test that classified patients with mammaglobin levels of at least 32.2 copies/pg beta-actin (units) in their circulating epithelial cells as positive for invasive breast cancer. This resulted in a sensitivity and specificity of 63.3% and 75.0%, respectively. A diagnostic test that classified patients as positive for invasive breast cancer when either mammaglobin levels were >46.3 units or B305D-C levels were >11.6 units increased the sensitivity and specificity to 70.5% and 81.0%, respectively. In the latter test, 12 of the 14 node-positive breast cancer patients were correctly identified. Including GABA A(pi) and B726P in the test did not increase its diagnostic potential. CONCLUSIONS: These results suggest that molecular characterization of circulating epithelial cells using mammaglobin and B305D-C offers potential for early detection of invasive breast cancer.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias da Mama/diagnóstico , Perfilação da Expressão Gênica , Proteínas de Neoplasias/biossíntese , Células Neoplásicas Circulantes , Uteroglobina/biossíntese , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/patologia , Diagnóstico Diferencial , Feminino , Humanos , Mamoglobina A , Pessoa de Meia-Idade , Invasividade Neoplásica , Proteínas de Neoplasias/análise , Proteínas de Neoplasias/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Uteroglobina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...