RESUMO
INTRODUCTION: The aim of this literature review was to determine the benefits of hyperbaric oxygen therapy after bone reconstruction procedures in humans and identify information that may be useful for the development of optimal protocols for hyperbaric oxygen therapy to stimulate bone healing. EVIDENCE ACQUISITION: We searched the electronic database PubMed/Medline for studies published between January 1999 and December 2018, using the key words: "bone" or "bone graft" and "mandible reconstruction" or "jaw reconstruction" and "hyperbaric oxygen" or "HBO." First, the titles and abstracts of the studies found were evaluated and those that corresponded to the aims of this review were pre-selected for analysis of the full text. Subsequently, the full texts were analyzed, and those that met the eligibility criteria were pre-selected for the review. The full texts of studies whose abstracts did not provide enough data for decision were also evaluated. Two examiners independently assessed eligibility, risk of bias and extracted data. EVIDENCE SYNTHESIS: A total of 2237 studies were found according to pre-established criteria for data collection, of which only 5 studies were included in this systematic review. Although we observed positive results in the included studies, there are still few standardized clinical studies in the literature, assessing hyperbaric oxygen therapy after extensive bone reconstructive procedures. CONCLUSIONS: It is difficult to compare results found in different studies due to the variety of methodological and clinical conditions assessed.
Assuntos
Oxigenoterapia Hiperbárica , Procedimentos de Cirurgia Plástica , Humanos , OxigênioRESUMO
Dengue virus (DENV) is the most common mosquito-borne viral disease. The World Health Organization estimates that 400 million new cases of dengue fever occur every year. Approximately 500,000 individuals develop severe and life-threatening complications from dengue fever, such as dengue shock syndrome (DSS) and dengue hemorrhagic fever (DHF), which cause 22,000 deaths yearly. Currently, there are no specific licensed therapeutics to treat DENV illness. We have previously shown that the MEK/ERK inhibitor U0126 inhibits the replication of the flavivirus yellow fever virus. In this study, we demonstrate that the MEK/ERK inhibitor AZD6244 has potent antiviral efficacy in vitro against DENV-2, DENV-3, and Saint Louis encephalitis virus (SLEV). We also show that it is able to protect AG129 mice from a lethal challenge with DENV-2 (D2S20). The molecule is currently undergoing phase III clinical trials for the treatment of non-small-cell lung cancer. The effect of AZD6244 on the DENV life cycle was attributed to a blockade of morphogenesis. Treatment of AG129 mice twice daily with oral doses of AZD6244 (100 mg/kg/day) prevented the animals from contracting dengue hemorrhagic fever (DHF)-like lethal disease upon intravenous infection with 1 × 105 PFU of D2S20. The effectiveness of AZD6244 was observed even when the treatment of infected animals was initiated 1-2 days postinfection. This was also followed by a reduction in viral copy number in both the serum and the spleen. There was also an increase in IL-1ß and TNF-α levels in mice that were infected with D2S20 and treated with AZD6244 in comparison to infected mice that were treated with the vehicle only. These data demonstrate the potential of AZD6244 as a new therapeutic agent to treat DENV infection and possibly other flavivirus diseases.
Assuntos
Antivirais/uso terapêutico , Benzimidazóis/uso terapêutico , Vírus da Dengue/crescimento & desenvolvimento , Dengue Grave/prevenção & controle , Animais , Linhagem Celular , Cricetinae , Vírus da Dengue/efeitos dos fármacos , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Interleucina-1beta/sangue , Camundongos , Dengue Grave/virologia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/sangueRESUMO
A new series of 3,6-disubstituted 2-(methylthio)-4-(trifluoromethyl)-3,4-dihydropyrimidin-4-ols displaying methyl, phenyl, aryl, and heteroaryl groups at the 6-position; and methyl, ethyl, allyl, and phenyl groups at the 3-position of the dihydropyrimidine ring, were synthesized and evaluated in vitro for acetylcholinesterase inhibitory activity. Seven compounds showed activity with IC50 values in the lower micromolar range. The compound 4-trifluoromethyl-6-(4-fluorophenyl)-3-methyl-2-methylthio-3,4-dihydropyrimidin-4-ol (6e) had the best inhibitory activity (IC50 2.2 ± 0.9 µm) and this inhibition was characterized as competitive. The molecular docking study showed that the acetylcholinesterase enzyme accommodates compound 6e in its catalytic site. The enantiomers of compound 6e, present similar interactions: π-π stacking interactions between the aromatic ring of the ligand's 4-fluorophenyl moiety and the aromatic rings of the electron-rich Trp84; and H-bonds between the hydroxyl group of Tyr121 and the hydroxyl moiety from 6e. The antioxidant effect of the dihydropyrimidin-4-ols was also investigated.
Assuntos
Acetilcolinesterase/química , Inibidores da Colinesterase/síntese química , Pirimidinas/química , Acetilcolinesterase/metabolismo , Animais , Antioxidantes/química , Sítios de Ligação , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/metabolismo , Dípteros/enzimologia , Desenho de Fármacos , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Pirimidinas/metabolismo , EstereoisomerismoRESUMO
The orthopoxvirus vaccinia virus (VACV) interacts with both actin and microtubule cytoskeletons in order to generate and spread progeny virions. Here, we present evidence demonstrating the involvement of PAK1 (p21-activated kinase 1) in the dissemination of VACV. Although PAK1 activation has previously been associated with optimal VACV entry via macropinocytosis, its absence does not affect the production of intracellular mature virions (IMVs) and extracellular enveloped virions (EEVs). Our data demonstrate that low-multiplicity infection of PAK1(-/-) MEFs leads to a reduction in plaque size followed by decreased production of both IMVs and EEVs, strongly suggesting that virus spread was impaired in the absence of PAK1. Confocal and scanning electron microscopy showed a substantial reduction in the amount of VACV-induced actin tails in PAK1(-/-) MEFs, but no significant alteration in the total amount of cell-associated enveloped virions (CEVs). Furthermore, the decreased VACV dissemination in PAK1(-/-) cells was correlated with the absence of phosphorylated ARPC1 (Thr21), a downstream target of PAK1 and a key regulatory subunit of the ARP2/3 complex, which is necessary for the formation of actin tails and viral spread. We conclude that PAK1, besides its role in virus entry, also plays a relevant role in VACV dissemination.
Assuntos
Endocitose , Interações Hospedeiro-Patógeno , Vaccinia virus/fisiologia , Internalização do Vírus , Quinases Ativadas por p21/metabolismo , Animais , Transporte Biológico , Células Cultivadas , Camundongos , Camundongos Knockout , Microscopia Confocal , Microscopia Eletrônica de Varredura , Quinases Ativadas por p21/genéticaRESUMO
Vaccinia virus (VACV) is a poxvirus and encodes many proteins that modify the host cell metabolism or inhibit the host response to infection. For instance, it is known that VACV infection can activate the mitogen-activated protein kinase (MAPK)/activator protein 1 (AP-1) pathway and inhibit activation of the pro-inflammatory transcription factor NF-κB. Since NF-κB and MAPK/AP-1 share common upstream activators we investigated whether six different VACV Bcl-2-like NF-κB inhibitors can also influence MAPK/AP-1 activation. Data presented show that proteins A52, B14 and K7 each contribute to AP-1 activation during VACV infection, and when expressed individually outwith infection. B14 induced the greatest stimulation of AP-1 and further investigation showed B14 activated mainly the MAPKs ERK (extracellular signal-regulated kinase) and JNK (Jun N-terminal kinase), and their substrate c-Jun (a component of AP-1). These data indicate that the same viral protein can have different effects on distinct signalling pathways, in blocking NF-κB activation whilst leading to MAPK/AP-1 activation.
Assuntos
Interações Hospedeiro-Patógeno , Fatores Imunológicos/metabolismo , Fator de Transcrição AP-1/metabolismo , Vaccinia virus/fisiologia , Proteínas Virais/metabolismo , Transdução de SinaisRESUMO
The Ras-Raf-MEK-ERK1/2 signaling pathway regulates fundamental processes in malignant cells. However, the exact contributions of MEK1 and MEK2 to the development of cancer remain to be established. We studied the effects of MEK small-molecule inhibitors (PD98059 and U0126) and MEK1 and MEK2 knock-down on cell proliferation, apoptosis and MAPK activation. We showed a diminution of cell viability that was associated with a downregulation of cyclin D1 expression and an increase of apoptosis marker in MEK2 silenced cells; by contrast, a slight increase of cell survival was observed in the absence of MEK1 that correlated with an augment of cyclin D1 expression. These data indicate that MEK2 but not MEK1 is essential for MDA-MB-231 cell survival. Importantly, the role of MEK2 in cell survival appeared independent on ERK1/2 phosphorylation since its absence did not alter the level of activated ERK1/2. Indeed, we have reported an unrevealed link between MEK2 and MKK3/MKK6-p38 MAPK axis where MEK2 was essential for the phosphorylation of MKK3/MKK6 and p38 MAPK that directly impacted on cyclin D1 expression. Importantly, the MEK1 inhibitor PD98059, like MEK1 silencing, induced an augment of cyclin D1 expression that correlated with an increase of MDA-MB-231 cell proliferation suggesting that MEK1 may play a regulatory role in these cells. In sum, the crucial role of MEK2 in MDA-MB-231 cell viability and the unknown relationship between MEK2 and MKK3/MKK6-p38 axis here revealed may open new therapeutic strategies for aggressive breast cancer.
Assuntos
Neoplasias da Mama/patologia , Ciclina D1/metabolismo , MAP Quinase Quinase 2/metabolismo , MAP Quinase Quinase 3/metabolismo , MAP Quinase Quinase 6/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Butadienos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Feminino , Flavonoides/farmacologia , Técnicas de Silenciamento de Genes , Inativação Gênica/efeitos dos fármacos , Humanos , Nitrilas/farmacologia , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacosRESUMO
The complexity of giant virus genomes is intriguing, especially the presence of genes encoding components of the protein translation machinery such as transfer RNAs and aminoacyl-tRNA-synthetases; these features are uncommon among other viruses. Although orthologs of these genes are codified by their hosts, one can hypothesize that having these translation-related genes might represent a gain of fitness during infection. Therefore, the aim of this study was to evaluate the expression of translation-related genes by mimivirus during infection of Acanthamoeba castellanii under different nutritional conditions. In silico analysis of amino acid usage revealed remarkable differences between the mimivirus isolates and the A. castellanii host. Relative expression analysis by quantitative PCR revealed that mimivirus was able to modulate the expression of eight viral translation-related genes according to the amoebal growth condition, with a higher induction of gene expression under starvation. Some mimivirus isolates presented differences in translation-related gene expression; notably, polymorphisms in the promoter regions correlated with these differences. Two mimivirus isolates did not encode the tryptophanyl-tRNA in their genomes, which may be linked with low conservation pressure based on amino acid usage analysis. Taken together, our data suggest that mimivirus can modulate the expression of translation-related genes in response to nutrient availability in the host cell, allowing the mimivirus to adapt to different hosts growing under different nutritional conditions.
RESUMO
BACKGROUND: The identification of novel giant viruses from the nucleocytoplasmic large DNA viruses group and their virophages has increased in the last decade and has helped to shed light on viral evolution. This study describe the discovery, isolation and characterization of Samba virus (SMBV), a novel giant virus belonging to the Mimivirus genus, which was isolated from the Negro River in the Brazilian Amazon. We also report the isolation of an SMBV-associated virophage named Rio Negro (RNV), which is the first Mimivirus virophage to be isolated in the Americas. METHODS/RESULTS: Based on a phylogenetic analysis, SMBV belongs to group A of the putative Megavirales order, possibly a new virus related to Acanthamoeba polyphaga mimivirus (APMV). SMBV is the largest virus isolated in Brazil, with an average particle diameter about 574 nm. The SMBV genome contains 938 ORFs, of which nine are ORFans. The 1,213.6 kb SMBV genome is one of the largest genome of any group A Mimivirus described to date. Electron microscopy showed RNV particle accumulation near SMBV and APMV factories resulting in the production of defective SMBV and APMV particles and decreasing the infectivity of these two viruses by several logs. CONCLUSION: This discovery expands our knowledge of Mimiviridae evolution and ecology.
Assuntos
Mimiviridae/isolamento & purificação , Filogenia , Rios/virologia , Brasil , DNA Viral/química , DNA Viral/genética , Microscopia Eletrônica de Transmissão , Mimiviridae/classificação , Mimiviridae/genética , Mimiviridae/ultraestrutura , Dados de Sequência Molecular , Fases de Leitura Aberta , Floresta Úmida , Análise de Sequência de DNA , Vírion/ultraestruturaRESUMO
Radiotherapy (RDT) is commonly used for cancer treatment, but high doses of ionizing radiation can directly affect healthy tissues. Positive biological effects of low-level laser therapy (LLLT) on bone repair have been demonstrated; however, this effect on surgical defects of bone previously compromised by radiotherapy has not been evaluated. The aim of this study was to investigate the influence of LLLT (λ = 830 nm) in femur repair after ionizing radiation. Twenty Wistar rats were divided into four groups: control group (GC, n = 5) creation of bone defects (BDs) only; laser group (GL), with BD and LLLT (n = 5); radiotherapy group (GR), submitted to RDT and BD (n = 5); and radiotherapy and laser group (GRL), submitted to RDT, BD, and LLLT (n = 5). GL and GRL received punctual laser application (DE = 210 J/cm(2), P = 50 mW, t = 120 s, and beam diameter of 0.04 cm(2)) immediately after surgery, with 48-h interval during 7 days. Animals were euthanized at 7 days after surgery, and bone sections were evaluated morphometrically with conventional microscopy. Bone repair was only observed in nonirradiated bone, with significant improvement in GL in comparison to GC. GR and GRL did not present any bone neoformation. The result demonstrated a positive local biostimulative effect of LLLT in normal bone. However, LLLT was not able to revert the bone metabolic damage due to ionizing radiation.
Assuntos
Doenças Ósseas/etiologia , Osso e Ossos/efeitos da radiação , Terapia com Luz de Baixa Intensidade/métodos , Radioterapia/efeitos adversos , Animais , Lasers , Masculino , Radiação Ionizante , Ratos , Ratos Wistar , CicatrizaçãoRESUMO
As fraturas mandibulares são as mais frequentes envolvendo o complexo bucomaxilofacial. Fraturas simples de mandíbula com pouco deslocamento tornam-se favoráveis ao tratamento, facilitando o acesso cirúrgico e a instalação do material de osteossíntese. No presente relato, apresentamos um caso clínico de tratamento de fratura mandibular em paciente gestante, sob anestesia local, discutindo a indicação dessa abordagem terapêutica e as suas vantagens.
Mandible fractures are the most common involving the maxillofacial complex. Simple fractures of the mandible with little displacement offers a favorable treatment, facilitating surgical access and installation of the osteosynthesis material. In this report, we present a case of mandibular fracture treatment in a pregnant patient under local anesthesia, discussing the indication for this therapeutic approach and its advantages.
RESUMO
The aim of this study is to evaluate the role of cholinesterases as an inflammatory marker in acute and chronic infection by Trypanosoma evansi in rabbits experimentally infected. Twelve adult female New Zealand rabbits were used and divided into two groups with 6 animals each: control group (rabbits 1-6) and infected group (rabbits 7-12). Infected group received intraperitoneally 0.5 mL of blood from a rat containing 108 parasites per animal. Blood samples used for cholinesterases evaluation were collected on days 0, 2, 7, 12, 27, 42, 57, 87, 102 and 118 days post-inoculation (PI). Increased activity (P<0.05) of butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) were observed in the blood on days 7 and 27, respectively and no differences were observed in cholinesterase activity in other periods. No significant difference in AChE activity (P>0.05) was observed in the encephalic structures. The increased activities of AChE and BChE probably have a pro-inflammatory purpose, attempting to reduce the concentration of acetylcholine, a neurotransmitter which has an anti-inflammatory property. Therefore, cholinesterase may be inflammatory markers in infection with T. evansi in rabbits.
Assuntos
Acetilcolinesterase/sangue , Butirilcolinesterase/sangue , Tripanossomíase/enzimologia , Doença Aguda , Animais , Biomarcadores/sangue , Doença Crônica , Feminino , Parasitemia/sangue , Coelhos , RatosRESUMO
Enteroaggregative Escherichia coli (EAEC) is an emerging pathogen associated to cases of acute or persistent diarrhea in children and adults from developed and developing countries. These microorganisms also have been isolated from human immunodeficiency virus-infected patients. EAEC exhibits aggregative adherence (AA) in HEp-2 cells. This pattern is characterized by the production of bacteria aggregates adhered to monolayer cultured cells with a "stacked brick" phenotype. The AA pattern is related to the presence of a 60MDa plasmid (pAA). In the present study, we evaluated the adherence, invasion and persistent survival of five EAEC strains with Caco-2 and T84 cells, by a bacteria invasion assay and transmission electron microscopy. EAEC isolated from cases of acute infantile diarrhea can be internalized by intestinal epithelial cells cultivated in vitro, suggesting that these strains may employ a mechanism of host cell invasion to colonize the intestinal mucosa. Results showed that EAEC strains could survive intracellularly up to 72h. Our data support evidence that EAEC is able to invade, persist and replicate within intestinal cells for extended time. This strategy may be advantageous to EAEC in colonization and survival, favoring the exploitation of an intracellular niche where these strains are protected against host clearance mechanisms, immune system and antibiotic treatment. Intracellular persistence of EAEC may be associated with development of persistent diarrhea associated to these microorganisms. To our knowledge, this is the first report of EAEC intracellular survival in cultured intestinal epithelial cells.
Assuntos
Células Epiteliais/microbiologia , Infecções por Escherichia coli/microbiologia , Escherichia coli/fisiologia , Intestinos/microbiologia , Aderência Bacteriana , Linhagem Celular Tumoral , Diarreia Infantil/microbiologia , Células Epiteliais/ultraestrutura , Escherichia coli/patogenicidade , Humanos , Lactente , Intestinos/ultraestrutura , Viabilidade MicrobianaRESUMO
Shellfish can bioaccumulate in their tissues pathogenic contaminants present in water and they have been related with several outbreaks of food-borne diseases worldwide. With their increased population in urban areas, gulls have been reported as an important source of water environment contamination. During a 10-month period, water, gulls feces and oyster samples were collected in a shellfish harvesting site and analyzed for total and fecal coliform counts (water) and Salmonella presence (gull feces and oyster meat). Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used to differentiate Salmonella species detected in gulls and oysters. Salmonella presence was detected in 3/10 of oyster samples and in 6/10 of gull feces samples by PCR. There was a relationship between Salmonella presence in oysters and fecal contamination in water. Restriction profiles of both gulls and oyster samples were similar to Salmonella Typhimurium profile by RFLP. These findings indicate strong evidence that gulls can contribute to Salmonella contamination of harvested oysters.
Assuntos
Charadriiformes/microbiologia , Microbiologia de Alimentos/normas , Ostreidae/microbiologia , Salmonella typhimurium/isolamento & purificação , Frutos do Mar/microbiologia , Microbiologia da Água/normas , Animais , Brasil , Monitoramento Ambiental , Fezes/microbiologia , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Salmonella typhimurium/genética , Estações do AnoRESUMO
Adsorption and desorption properties of atrazine and some of its metabolites, hydroxyatrazine (AT-OH), deethylatrazine (DEA), and deisopropylatrazine (DIA), were studied with a clay-rich soil sample (clay content of 53%). A part of this soil was treated with humic acid (Soil-HA) to assess the influence of this important component of natural organic matter on adsorption and desorption processes. This study was performed using the batch approach with 1.0 g of soil, or Soil-HA, in 5.0 mL of 0.010 mol L(-)(1) CaCl(2) solution containing the herbicide and the metabolites in a concentration range between 0.010 and 5.0 mg L(-)(1). After 24 h of contact time, the suspensions were centrifuged and the four compounds were quantified in the supernatant phases by high-performance liquid chromatography. The adsorption and desorption data of both Soil and Soil-HA were properly fitted by the linearized Freundlich equation. For the untreated soil, the adsorption affinity order evaluated as a function of the K(f) values was AT-OH > AT > DIA > DEA, while desorption followed the order DEA > DIA approximately AT > AT-OH. The presence of humic acid increased significantly the adsorption of all compounds, following the same affinity order observed for the untreated soil. Increase in adsorption was especially high for AT-OH and AT. On the other hand, the dealkylated metabolites, DEA and DIA, were more easily desorbed from the Soil-HA sample, suggesting that natural organic matter facilitates the leaching of these compounds. Desorption order in the presence of humic acid was DEA > DIA > AT > AT-OH.