Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-521388

RESUMO

The integrated stress response (ISR) is a eukaryotic cell pathway that triggers translational arrest and the formation of stress granules (SGs) in response to various stress signals, including those caused by viral infections. The SARS-CoV-2 nucleocapsid protein has been shown to disrupt SGs, but SARS-CoV-2 interactions with other components of the pathway remains poorly characterized. Here, we show that SARS-CoV-2 infection triggers the ISR through activation of the eIF2-kinase PKR while inhibiting a variety of downstream effects. In line with previous studies, SG formation was efficiently inhibited and the induced eIF2 phosphorylation only minimally contributed to the translational arrest observed in infected cells. Despite ISR activation and translational arrest, expression of the stress-responsive transcripts ATF4 and CHOP was not induced in SARS-CoV-2 infected cells. Finally, we found variant-specific differences in the activation of the ISR between ancestral SARS-CoV-2 and the Delta and Omicron BA.1 variants in that Delta infection induced weaker PKR activation while Omicron infection induced higher levels of p-eIF2 and greatly increased SG formation compared to the other variants. Our results suggest that different SARS-CoV-2 variants can affect normal cell functions differently, which can have an impact on pathogenesis and treatment strategies.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-508120

RESUMO

The corona virus (SARS-CoV-2) pandemic and the resulting long-term neurological complications in patients, known as long COVID, have renewed the interest in the correlation between viral infections and neurodegenerative brain disorders. While many viruses can reach the central nervous system (CNS) causing acute or chronic infections (such as herpes simplex virus 1, HSV-1), the lack of a clear mechanistic link between viruses and protein aggregation into amyloids, a characteristic of several neurodegenerative diseases, has rendered such a connection elusive. Recently, we showed that viruses can induce aggregation of purified amyloidogenic proteins via the direct physicochemical mechanism of heterogenous nucleation (HEN). In the current study, we show that the incubation of HSV-1 and SARS-CoV-2 with human cerebrospinal fluid (CSF) leads to the amyloid aggregation of several proteins known to be involved in neurodegenerative diseases, such as: APLP1 (amyloid beta precursor like protein 1), ApoE, clusterin, 2-macroglobulin, PGK-1 (phosphoglycerate kinase 1), ceruloplasmin, nucleolin, 14-3-3, transthyretin and vitronectin. Importantly, UV-inactivation of SARS-CoV-2 does not affect its ability to induce amyloid aggregation, as amyloid formation is dependent on viral surface catalysis via HEN and not its ability to replicate. Our results show that viruses can physically induce amyloid aggregation of proteins in human CSF, and thus providing a potential mechanism that may account for the association between persistent and latent/reactivating brain infections and neurodegenerative diseases.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22277549

RESUMO

Effective humoral immune responses require well-orchestrated cellular interactions between B and T follicular helper (Tfh) cells. Whether this interaction is impaired and associated with COVID-19 disease severity is unknown. Here, longitudinal acute and convalescent blood samples from 49 COVID-19 patients across mild to severe disease were analysed. We found that during acute infection activated and SARS-CoV-2-specific circulating Tfh (cTfh) cell frequencies expanded with increasing disease severity. The frequency of activated and SARS-CoV-2-specific cTfh cells correlated with plasmablast frequencies and SARS-CoV-2 antibody titers, avidity and neutralization. Furthermore, cTfh cells but not other memory CD4 T cells, isolated from severe patients induced more pronounced differentiation of autologous plasmablast and antibody production in vitro compared to cTfh cells isolated from mild patients. However, the development of virus-specific cTfh cells was delayed in patients that displayed or later developed severe disease compared to those that maintained a mild or moderate disease. This correlated with a delayed induction of high-avidity and neutralizing virus-specific antibodies. Our study therefore suggests that impaired generation of functional virus-specific cTfh cells delays the production of high-quality antibodies to combat the infection at an early stage and thereby enabling progression to more severe COVID-19 disease.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22273333

RESUMO

BackgroundBooster vaccine doses offer protection against severe COVID-19 caused by omicron but are less effective against infection. Characteristics such as serological correlates of protection, viral abundance, and clearance of omicron infection in triple vaccinated individuals are scarce. MethodsWe conducted a 4-week twice-weekly SARS-CoV-2 qPCR screening shortly after an mRNA vaccine booster in 368 healthcare workers. Spike-specific IgG levels and neutralization titers were determined at study start. qPCR-positive participants were sampled repeatedly for two weeks and monitored for symptoms. ResultIn total 81 (cumulative incidence 22%) omicron infections were detected, divided between BA.1, BA.1.1 and BA.2. Increasing post-booster antibody titers were protective against infection (p<0.05), linked to reduced viral load (p<0.01) and time to viral clearance (p<0.05). Only 10% of infected participants remained asymptomatic through the course of their infection. Viral load peaked at day 3 and live virus could be detected for up to 9 days after first PCR-positive sample. Presence of symptoms correlated to elevated viral load (p<0.0001), but despite resolution of symptoms most participants showed Ct levels <30 at day 9. No significant differences were observed for viral load and time to viral clearance between BA.1, BA.1.1 and BA.2 infected individuals. ConclusionWe report a high incidence of omicron infection despite recent booster vaccination in triple vaccinated individuals. Increasing levels of vaccine-induced spike-specific WT antibodies entail increased protection against infection and reduce viral load if infected. High viral load and secretion of live virus for up to nine days may facilitate transmission in a triple vaccinated population.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21264948

RESUMO

People with previous SARS-CoV-2 infection mount potent immune responses to COVID-19 vaccination, but long-term effects of prior infection on these immune responses are unknown. We investigated the long-term impact of prior SARS-CoV-2 infection on humoral and cellular immune responses in healthcare workers receiving the mRNA BNT162b2 or the adenovirus vectored ChAdOx1 nCoV-19 vaccine. Vaccination with both vaccine platforms resulted in substantially enhanced T cell immune responses, antibody responses to spike and neutralizing antibodies effective against ten SARS-CoV-2 variants following SARS-CoV-2 infection, compared to in naive individuals. The enhanced immune responses sustained over seven months following vaccination. These findings imply that prior infection should be taken into consideration when planning booster doses and design of current and future COVID-19 vaccine programs. One-Sentence SummarySARS-CoV-2 infection prior to vaccination leads to substantial and durable increases in immune memory responses.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21261951

RESUMO

BackgroundSARS-CoV-2 variants, such as Alpha, Beta, Gamma and Delta, are raising concern about the efficiency of neutralizing antibodies (NAb) induced by wild-type infection or vaccines based on the wild-type spike. MethodsWe determined IgG and NAb against SARS-CoV-2 variants one year following mild wild-type infection (n=104) and two-dose regimens with BNT162b2 (BNT/BNT) (n=67), ChAdOx1 (ChAd/ChAd) (n=82), or heterologous ChAdOx1 followed by BNT162b2 (ChAd/BNT) (n=116). FindingsWild type spike IgG and NAb remained detectable in 80% (83/104) of unvaccinated participants one year post mild infection. The neutralizing capacity was similar against wild type (reference), Alpha (0.95 (0.92-0.98) and Delta 1.03 (0.95-1.11) but significantly reduced against Beta (0.54 (0.48-0.60)) and Gamma 0.51 (0.44-0.61). Similarly, BNT/BNT and ChAd/ChAd elicited sustained capacity against Alpha and Delta (1.01 (0.78-1.31) and 0.85 (0.64-1.14)) and (0.96 (0.84-1.09) and 0.82 (0.61-1.10) respectively), with reduced capacity against Beta (0.67 (0.50-0.88) and 0.53 (0.40-0.71)) and Gamma (0.12 (0.06-0.27) and 0.54 (0.37-0.80)). A similar trend was found following ChAd/BNT (0.74 (0.66-0.83) and 0.70 (0.50-0.97) against Alpha and Delta and 0.29 (0.20-0.42) and 0.13 (0.08-0.20) against Beta and Gamma). InterpretationPersistent neutralization of the wide-spread Alpha and Delta variants one year after wild-type infection may aid vaccine policy makers in low-resource settings when prioritizing vaccine supply. The reduced capacity of neutralizing Beta and Gamma strains, but not the Alpha and Delta strains following both infection and three different vaccine regimens argues for caution against Beta and Gamma-exclusive mutations in the efforts to optimize next generation SARS-CoV-2 vaccines. FundingA full list of funding bodies that contributed to this study can be found in the Acknowledgements section

7.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21256866

RESUMO

BackgroundRecent reports demonstrate robust serological responses to a single dose of messenger RNA (mRNA) vaccines in individuals previously infected with SARS-CoV-2. Data on immune responses following a single-dose adenovirus-vectored vaccine expressing the SARS-CoV-2 spike protein (ChAdOx1 nCoV-19) in individuals with previous SARS-CoV-2 infection are however limited, and current guidelines recommend a two-dose regime regardless of preexisting immunity. MethodsWe compared spike-specific IgG and pseudo-neutralizing spike-ACE2 blocking antibodies against SARS-CoV-2 wild type and variants B.1.1.7, B.1.351, and P1 following two doses of the mRNA vaccine BNT162b2 and a single dose of the adenovector vaccine ChAdOx1 nCoV-19 in 232 healthcare workers with and without previous COVID-19. FindingsThe post-vaccine levels of spike-specific IgG and neutralizing antibodies against the SARS-CoV-2 wild type and all three variants of concern were similar or higher in participants receiving a single dose of ChAdOx1 nCoV-19 vaccine post SARS-CoV-2 infection (both < 11 months post infection (n=37) and [≥] 11 months infection (n=46)) compared to participants who received two doses of BNT162b2 vaccine (n=149). InterpretationOur data support that a single dose ChAdOx1 nCoV-19 vaccine serves as an effective immune booster after priming with natural SARS-CoV-2 infection up to at least 11 months post infection.

8.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-435581

RESUMO

BackgroundInsights into early, specific humoral and cellular responses to infection with SARS-CoV-2, as well as the persistence and magnitude of resulting immune memory is important amidst the ongoing pandemic. The combination of humoral and cellular immunity will most likely contribute to protection from reinfection or severe disease. MethodsHere, we conducted a longitudinal study on hospitalized moderate and severe COVID-19 patients from the acute phase of disease into convalescence at five- and nine-months post symptom onset. Utilizing flow cytometry, serological assays as well as B cell and T cell FluoroSpot assays, we assessed the magnitude and specificity of humoral and cellular immune memory during and after human SARS-CoV-2 infection. FindingsDuring acute COVID-19, we observed an increase in germinal center activity, a substantial expansion of antibodysecreting cells, and the generation of SARS-CoV-2-neutralizing antibodies. Despite gradually decreasing antibody levels, we show persistent, neutralizing antibody titers as well as robust specific memory B cell responses and polyfunctional T cell responses at five- and nine-months after symptom onset in both moderate and severe COVID-19 patients. Long-term SARS-CoV-2 specific responses were marked by preferential targeting of spike over nucleocapsid protein. ConclusionsOur findings describe the initiation and, importantly, persistence of cellular and humoral SARS-CoV-2 specific immunological memory in hospitalized COVID-19 patients long after recovery, likely contributing towards protection against reinfection.

9.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21250591

RESUMO

Since the outset of the COVID-19 pandemic, increasing evidence suggests that the innate immune responses play an important role in the disease development. A dysregulated inflammatory state has been proposed as key driver of clinical complications in COVID-19, with a potential detrimental role of granulocytes. However, a comprehensive phenotypic description of circulating granulocytes in SARS-CoV-2-infected patients is lacking. In this study, we used high-dimensional flow cytometry for granulocyte immunophenotyping in peripheral blood collected from COVID-19 patients during acute and convalescent phases. Severe COVID-19 was associated with increased levels of both mature and immature neutrophils, and decreased counts of eosinophils and basophils. Distinct immunotypes were evident in COVID-19 patients, with altered expression of several receptors involved in activation, adhesion and migration of granulocytes (e.g. CD62L, CD11a/b, CD69, CD63, CXCR4). Paired sampling revealed recovery and phenotypic restoration of the granulocytic signature in the convalescent phase. The identified granulocyte immunotypes correlated with distinct sets of soluble inflammatory markers supporting pathophysiologic relevance. Furthermore, clinical features, including multi-organ dysfunction and respiratory function, could be predicted using combined laboratory measurements and immunophenotyping. This study provides a comprehensive granulocyte characterization in COVID-19 and reveals specific immunotypes with potential predictive value for key clinical features associated with COVID-19. SignificanceAccumulating evidence shows that granulocytes are key modulators of the immune response to SARS-CoV-2 infection and their dysregulation could significantly impact COVID-19 severity and patient recovery after virus clearance. In the present study, we identify selected immune traits in neutrophil, eosinophil and basophil subsets associated to severity of COVID-19 and to peripheral protein profiles. Moreover, computational modeling indicates that the combined use of phenotypic data and laboratory measurements can effectively predict key clinical outcomes in COVID-19 patients. Finally, patient-matched longitudinal analysis shows phenotypic normalization of granulocyte subsets 4 months after hospitalization. Overall, in this work we extend the current understanding of the distinct contribution of granulocyte subsets to COVID-19 pathogenesis.

10.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21249162

RESUMO

Current SARS-CoV-2 serological assays generate discrepant results, and the longitudinal characteristics of antibodies targeting various antigens after asymptomatic to mild COVID-19 are yet to be established. This longitudinal cohort study including 1965 healthcare workers, of which 381 participants exhibited antibodies against the SARS-CoV-2 spike antigen at study inclusion, reveal that these antibodies remain detectable in most participants, 96%, at least four months post infection, despite having had no or mild symptoms. Virus neutralization capacity was confirmed by microneutralization assay in 91% of study participants at least four months post infection. Contrary to antibodies targeting the spike protein, antibodies against the nucleocapsid protein were only detected in 80% of previously anti-nucleocapsid IgG positive healthcare workers. Both anti-spike and anti-nucleocapsid IgG levels were significantly higher in previously hospitalized COVID-19 patients four months post infection than in healthcare workers four months post infection (p=2*10-23 and 2*10-13 respectively). Although the magnitude of humoral response was associated with disease severity, our findings support a durable and functional humoral response after SARS-CoV-2 infection even after no or mild symptoms. We further demonstrate differences in antibody kinetics depending on the antigen, arguing against the use of the nucleocapsid protein as target antigen in population-based SARS-CoV-2 serological surveys.

11.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20211367

RESUMO

ObjectivesThe role of innate lymphoid cells (ILCs) in coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is unknown. Understanding the immune response in COVID-19 could contribute to unravel the pathogenesis and identification of treatment targets. To describe the phenotypic landscape of circulating ILCs in COVID-19 patients and to identify ILC phenotypes correlated to serum biomarkers, clinical markers, and laboratory parameters relevant in COVID-19. MethodsBlood samples collected from moderately (n=11) and severely ill (n=12) COVID-19 patients as well as healthy control donors (n=16), were analyzed with 18-parameter flow cytometry. Using supervised and unsupervised approaches, we examined the ILC activation status and homing profile. Clinical and laboratory parameters were obtained from all COVID-19 patients and serum biomarkers were analyzed with multiplex immunoassays. ResultsILCs were largely depleted from the circulation of COVID-19 patients compared with healthy controls. Remaining circulating ILCs from patients revealed increased frequencies of ILC2 in moderate COVID-19, with a concomitant decrease of ILC precursors (ILCp), as compared with controls. ILC2 and ILCp showed an activated phenotype with increased CD69 expression, whereas expression levels of the chemokine receptors CXCR3 and CCR4 were significantly altered in ILC2 and ILCp, and ILC1, respectively. The activated ILC profile of COVID-19 patients was associated with soluble inflammatory markers, while frequencies of ILC subsets were correlated with laboratory parameters that reflect the disease severity. ConclusionThis study provides insights into the potential role of ILCs in immune responses against SARS-CoV-2, particularly linked to the severity of COVID-19.

12.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20191940

RESUMO

To understand the risk of transmission of SARS-CoV-2 in hospitalized COVID-19 patients we simultaneously assessed the presence of SARS-CoV-2 RNA, live infectious virus in the airways, and virus-specific IgG and neutralizing antibodies in sera in 36 hospitalized COVID-19 patients. SARS-CoV-2 could be cultured from four patients, all with low or undetectable antibody response. Our data suggests that the level of SARS-CoV-2 antibodies may correlate to risk for shedding live SARS-CoV-2 virus in hospitalized COVID-19 patients.

13.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20182550

RESUMO

Severe COVID-19 is characterized by excessive inflammation of the lower airways. The balance of protective versus pathological immune responses in COVID-19 is incompletely understood. Mucosa-associated invariant T (MAIT) cells are antimicrobial T cells that recognize bacterial metabolites, and can also function as innate-like sensors and mediators of antiviral responses. Here, we investigated the MAIT cell compartment in COVID-19 patients with moderate and severe disease, as well as in convalescence. We show profound and preferential decline in MAIT cells in circulation of patients with active disease paired with strong activation, as well as significant MAIT cell enrichment and pro-inflammatory IL-17A bias in the airways. Unsupervised analysis identified MAIT cell CD69high and CXCR3low immunotypes associated with poor clinical outcome. MAIT cell levels normalized in the convalescent phase, consistent with dynamic recruitment to the tissues and subsequent release with disease resolution. These findings indicate that MAIT cells are engaged in the immune response against SARS-CoV-2 and suggest their involvement in COVID-19 immunopathogenesis. One sentence summaryMAIT cells are strongly activated by SARS-CoV-2 infection in a manner associated with disease severity and outcome, they decline in blood, are enriched in the airways as a prominent IL-17A expressing subset, and dynamically recover in circulation during convalescence.

14.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20181404

RESUMO

Monocytes and dendritic cells are crucial mediators of innate and adaptive immune responses during viral infection, but misdirected responses by these cells might contribute to immunopathology. A comprehensive map of the mononuclear phagocyte (MNP) landscape during SARS-CoV-2 infection and concomitant COVID-19 disease is lacking. We performed 25-color flow cytometry-analysis focusing on MNP lineages in SARS-CoV-2 infected patients with moderate and severe COVID-19. While redistribution of monocytes towards intermediate subset and decrease in circulating DCs occurred in response to infection, severe disease associated with appearance of Mo-MDSC-like cells and a higher frequency of pre-DC2. Furthermore, phenotypic alterations in MNPs, and their late precursors, were cell-lineage specific and in select cases associated with severe disease. Finally, unsupervised analysis revealed that the MNP profile, alone, could identify a cluster of COVID-19 non-survivors. This study provides a reference for the MNP response to clinical SARS-CoV-2 infection and unravel myeloid dysregulation associated with severe COVID-19.

15.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20148478

RESUMO

Understanding innate immune responses in COVID-19 is important for deciphering mechanisms of host responses and interpreting disease pathogenesis. Natural killer (NK) cells are innate effector lymphocytes that respond to acute viral infections, but might also contribute to immune pathology. Here, using 28-color flow cytometry, we describe a state of strong NK cell activation across distinct subsets in peripheral blood of COVID-19 patients, a pattern mirrored in scRNA-seq signatures of lung NK cells. Unsupervised high-dimensional analysis identified distinct immunophenotypes that were linked to disease severity. Hallmarks of these immunophenotypes were high expression of perforin, NKG2C, and Ksp37, reflecting a high presence of adaptive NK cell expansions in circulation of patients with severe disease. Finally, arming of CD56bright NK cells was observed in course of COVID-19 disease states, driven by a defined protein-protein interaction network of inflammatory soluble factors. This provides a detailed map of the NK cell activation-landscape in COVID-19 disease.

16.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-174888

RESUMO

ABSTRACTSARS-CoV-2-specific memory T cells will likely prove critical for long-term immune protection against COVID-19. We systematically mapped the functional and phenotypic landscape of SARS-CoV-2-specific T cell responses in a large cohort of unexposed individuals as well as exposed family members and individuals with acute or convalescent COVID-19. Acute phase SARS-CoV-2-specific T cells displayed a highly activated cytotoxic phenotype that correlated with various clinical markers of disease severity, whereas convalescent phase SARS-CoV-2-specific T cells were polyfunctional and displayed a stem-like memory phenotype. Importantly, SARS-CoV-2-specific T cells were detectable in antibody-seronegative family members and individuals with a history of asymptomatic or mild COVID-19. Our collective dataset shows that SARS-CoV-2 elicits robust memory T cell responses akin to those observed in the context of successful vaccines, suggesting that natural exposure or infection may prevent recurrent episodes of severe COVID-19 also in seronegative individuals.Competing Interest StatementThe authors have declared no competing interest.View Full Text

17.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-118729

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in late 2019 and has since become a global pandemic. Pathogen-specific antibodies are typically a major predictor of protective immunity, yet B cell and antibody responses during COVID-19 are not fully understood. Here, we analyzed antibody-secreting cell (ASC) and antibody responses in twenty hospitalized COVID-19 patients. The patients exhibited typical symptoms of COVID-19, and presented with reduced lymphocyte numbers and increased T cell and B cell activation. Importantly, we detected an expansion of SARS-CoV-2 nucleocapsid protein-specific ASCs in all twenty COVID-19 patients using a multicolor FluoroSpot assay. Out of the 20 patients, 16 had developed SARS-CoV-2-neutralizing antibodies by the time of inclusion in the study. SARS-CoV-2-specific IgA, IgG and IgM antibody levels positively correlated with SARS-CoV-2-neutralizing antibody titers, suggesting that SARS-CoV-2-specific antibody levels may reflect the titers of neutralizing antibodies in COVID-19 patients during the acute phase of infection. Lastly, we showed that interleukin 6 (IL-6) and C-reactive protein (CRP) concentrations were higher in serum of patients who were hospitalized for longer, supporting the recent observations that IL-6 and CRP could be used to predict COVID-19 severity. Altogether, this study constitutes a detailed description of clinical and immunological parameters in twenty COVID-19 patients, with a focus on B cell and antibody responses, and provides tools to study immune responses to SARS-CoV-2 infection and vaccination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...