Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 630(8016): 421-428, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811724

RESUMO

Farmed soils contribute substantially to global warming by emitting N2O (ref. 1), and mitigation has proved difficult2. Several microbial nitrogen transformations produce N2O, but the only biological sink for N2O is the enzyme NosZ, catalysing the reduction of N2O to N2 (ref. 3). Although strengthening the NosZ activity in soils would reduce N2O emissions, such bioengineering of the soil microbiota is considered challenging4,5. However, we have developed a technology to achieve this, using organic waste as a substrate and vector for N2O-respiring bacteria selected for their capacity to thrive in soil6-8. Here we have analysed the biokinetics of N2O reduction by our most promising N2O-respiring bacterium, Cloacibacterium sp. CB-01, its survival in soil and its effect on N2O emissions in field experiments. Fertilization with waste from biogas production, in which CB-01 had grown aerobically to about 6 × 109 cells per millilitre, reduced N2O emissions by 50-95%, depending on soil type. The strong and long-lasting effect of CB-01 is ascribed to its tenacity in soil, rather than its biokinetic parameters, which were inferior to those of other strains of N2O-respiring bacteria. Scaling our data up to the European level, we find that national anthropogenic N2O emissions could be reduced by 5-20%, and more if including other organic wastes. This opens an avenue for cost-effective reduction of N2O emissions for which other mitigation options are lacking at present.


Assuntos
Produção Agrícola , Fazendas , Aquecimento Global , Óxido Nitroso , Microbiologia do Solo , Solo , Proteínas de Bactérias/metabolismo , Biocombustíveis/provisão & distribuição , Flavobacteriaceae/citologia , Flavobacteriaceae/crescimento & desenvolvimento , Flavobacteriaceae/metabolismo , Aquecimento Global/prevenção & controle , Nitrogênio/metabolismo , Óxido Nitroso/metabolismo , Óxido Nitroso/análise , Solo/química , Produção Agrícola/métodos , Produção Agrícola/tendências , Europa (Continente)
2.
mBio ; 13(3): e0078822, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35638872

RESUMO

Manipulating soil metabolism through heavy inoculation with microbes is feasible if organic wastes can be utilized as the substrate for growth and vector as a fertilizer. This, however, requires organisms active in both digestate and soil (generalists). Here, we present a dual enrichment strategy to enrich and isolate such generalists among N2O-respiring bacteria (NRB) in soil and digestates, to be used as an inoculum for strengthening the N2O-reduction capacity of soils. The enrichment strategy utilizes sequential batch enrichment cultures alternating between sterilized digestate and soil as substrates, with each batch initiated with limited O2 and unlimited N2O. The cultures were monitored for gas kinetics and community composition. As predicted by a Lotka-Volterra competition model, cluster analysis identified generalist operational taxonomic units (OTUs) which became dominant, digestate/soil-specialists which did not, and a majority that were gradually diluted out. We isolated several NRBs circumscribed by generalist OTUs. Their denitrification genes and phenotypes predicted a variable capacity to act as N2O-sinks, while all genomes predicted broad catabolic capacity. The latter contrasts with previous attempts to enrich NRB by anaerobic incubation of unsterilized digestate only, which selected for organisms with a catabolic capacity limited to fermentation products. The two isolates with the most promising characteristics as N2O sinks were a Pseudomonas sp. with a full-fledged denitrification-pathway and a Cloacibacterium sp. carrying only N2O reductase (clade II), and soil experiments confirmed their capacity to reduce N2O-emissions from soil. The successful enrichment of NRB with broad catabolic spectra suggests that the concept of dual enrichment should also be applicable for enrichment of generalists with traits other than N2O reduction. IMPORTANCE N2O emissions from farmed soils are a major source of climate forcing. Here, denitrifying bacteria act as both source and sink for N2O, determined by regulatory traits or the absence of genes coding for the enzymes producing or reducing N2O. One approach to reducing emissions is to amend large numbers of N2O-reducing bacteria (NRB) to soil. This was shown to be feasible by growing NRB to high densities in organic wastes and then applying them as fertilizers. The effect on N2O emissions, however, was transient because the isolated NRBs were unsuited to soil. Here, we have developed an enrichment strategy selecting for organisms with generalist lifestyles, tolerant of rapid environmental changes. This was used to isolate robust NRBs that grow both in digestate and when amended to soils. This strategy opens an avenue for obtaining not just robust NRBs to reduce N2O emissions, but any organism destined for application to complex environments.


Assuntos
Óxido Nitroso , Solo , Agricultura , Bactérias/genética , Bactérias/metabolismo , Desnitrificação , Fertilizantes/análise , Óxido Nitroso/metabolismo , Solo/química , Microbiologia do Solo
3.
ISME J ; 16(2): 580-590, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34489539

RESUMO

Inoculating agricultural soils with nitrous oxide respiring bacteria (NRB) can reduce N2O-emission, but would be impractical as a standalone operation. Here we demonstrate that digestates obtained after biogas production are suitable substrates and vectors for NRB. We show that indigenous NRB in digestates grew to high abundance during anaerobic enrichment under N2O. Gas-kinetics and meta-omic analyses showed that these NRB's, recovered as metagenome-assembled genomes (MAGs), grew by harvesting fermentation intermediates of the methanogenic consortium. Three NRB's were isolated, one of which matched the recovered MAG of a Dechloromonas, deemed by proteomics to be the dominant producer of N2O-reductase in the enrichment. While the isolates harbored genes required for a full denitrification pathway and could thus both produce and sequester N2O, their regulatory traits predicted that they act as N2O sinks in soil, which was confirmed experimentally. The isolates were grown by aerobic respiration in digestates, and fertilization with these NRB-enriched digestates reduced N2O emissions from soil. Our use of digestates for low-cost and large-scale inoculation with NRB in soil can be taken as a blueprint for future applications of this powerful instrument to engineer the soil microbiome, be it for enhancing plant growth, bioremediation, or any other desirable function.


Assuntos
Biocombustíveis , Óxido Nitroso , Agricultura , Bactérias/genética , Bactérias/metabolismo , Desnitrificação , Óxido Nitroso/metabolismo , Solo , Microbiologia do Solo
4.
Sci Rep ; 11(1): 2979, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536458

RESUMO

In this study, nitrification before and after abrupt cross-transfer in salinity was investigated in two moving bed biofilm reactors inoculated with nitrifying cultures that had adaptation to freshwater (FR) and seawater salinities (SR). FR and SR MBRRs were exposed to short and long term cross-transfer in salinity, and the functional capacity of nitrifying microbial communities was quantified by the estimation of ammonia and nitrite oxidation rates. Salinity induced successions were evaluated before and after salinity change by deep sequencing of 16S rRNA gene amplicons and statistical analysis. The bacterial community structure was characterized and Venn diagrams were included. The results indicated that after salinity cross-transfer, the FR was not significantly recovered at seawater salinity whereas SR showed high resistance to stress caused by low-salt. Succession and physiological plasticity were the main mechanisms of the long-term adaption of the nitrifying communities exposed to abrupt salinity changes. Independently of salinity, some nitrifiers presented high physiological plasticity towards salinity and were very successful at both zero and full seawater salinity. SR culture is robust and suitable inoculum for ammonium removal from recirculating aquaculture systems and industrial wastewaters with variable and fast salinity changes. Our findings contradict the current perspective of the significance of salinity on the structure of nitrifying communities.

5.
Water Res ; 95: 48-58, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26986496

RESUMO

This paper describes an experimental study of microbial communities of three moving bed biofilm reactors (MBBR) inoculated with nitrifying cultures originated from environments with different salinity; freshwater, brackish (20‰) and seawater. All reactors were run until they operated at a conversion efficiency of >96%. The microbial communities were profiled using 454-pyrosequencing of 16S rRNA gene amplicons. Statistical analysis was used to investigate the differences in microbial community structure and distribution of the nitrifying populations with different salinity environments. Nonmetric multidimensional scaling analysis (NMDS) and the PERMANOVA test based on Bray-Curtis similarities revealed significantly different community structure in the three reactors. The brackish reactor showed lower diversity index than fresh and seawater reactors. Venn diagram showed that 60 and 78% of the total operational taxonomic units (OTUs) in the ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) guild, respectively, were unique OTUs for a given reactor. Similarity Percentages (SIMPER) analysis showed that two-thirds of the total difference in community structure between the reactors was explained by 10 OTUs, indicating that only a small number of OTUs play a numerically dominant role in the nitrification process. Acute toxicity of salt stress on ammonium and nitrite oxidizing activities showed distinctly different patterns, reaching 97% inhibition of the freshwater reactor for ammonium oxidation rate. In the brackish culture, inhibition was only observed at maximal level of salinity, 32‰. In the fully adapted seawater culture, higher activities were observed at 32‰ than at any of the lower salinities.


Assuntos
Biofilmes , Nitrificação , Amônia , Bactérias/genética , Reatores Biológicos/microbiologia , Oxirredução , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...