Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-476786

RESUMO

SARS-CoV-2 has been found capable of inducing prolonged pathologies collectively referred to as Long-COVID. To better understand this biology, we compared the short- and long-term systemic responses in the golden hamster following either SARS-CoV-2 or influenza A virus (IAV) infection. While SARS-CoV-2 exceeded IAV in its capacity to cause injury to the lung and kidney, the most significant changes were observed in the olfactory bulb (OB) and olfactory epithelium (OE) where inflammation was visible beyond one month post SARS-CoV-2 infection. Despite a lack of detectable virus, OB/OE demonstrated microglial and T cell activation, proinflammatory cytokine production, and interferon responses that correlated with behavioral changes. These findings could be corroborated through sequencing of individuals who recovered from COVID-19, as sustained inflammation in OB/OE tissue remained evident months beyond disease resolution. These data highlight a molecular mechanism for persistent COVID-19 symptomology and characterize a small animal model to develop future therapeutics.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-463532

RESUMO

The sense of smell (olfaction) is one of the most important senses for animals including humans. Despite significant advances in the understanding mechanism of olfaction, currently, there are no objective non-invasive methods that can identify loss of smell. Covid-19-related loss of smell has highlighted the need to develop methods that can identify loss of olfaction. Voltage-gated sodium channel 1.7 (NaV1.7) plays a critical role in olfaction by aiding the signal propagation to the olfactory bulb. We have identified several conditions such as chronic inflammation and viral infections such as Covid-19 that lead to loss of smell correlate with downregulation of NaV1.7 expression at transcript and protein levels in the olfactory epithelium. Leveraging this knowledge, we have developed a novel fluorescent probe Tsp1a-IR800 that targets NaV1.7. Using fluorescence imaging we can objectively measure the loss of sense of smell in live animals non-invasively. We also demonstrate that our non-invasive method is semiquantitative because the loss of fluorescence intensity correlates with the level of smell loss. Our results indicate, that our probe Tsp1a-IR800, can objectively diagnose anosmia in animal and human subjects using infrared fluorescence. We believe this method to non-invasively diagnose loss of smell objectively is a significant advancement in relation to current methods that rely on highly subjective behavioral studies and can aid in studying olfaction loss and the development of therapeutic interventions.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-430314

RESUMO

Olfaction relies on a coordinated partnership between odorant flow and neuronal communication. Disruption in our ability to detect odors, or anosmia, has emerged as a hallmark symptom of infection with SARS-CoV-2, yet the mechanism behind this abrupt sensory deficit remains elusive. Here, using molecular evaluation of human olfactory epithelium (OE) from subjects succumbing to COVID-19 and a hamster model of SARS-CoV-2 infection, we discovered widespread downregulation of olfactory receptors (ORs) as well as key components of their signaling pathway. OR downregulation likely represents a non-cell autonomous effect, since SARS-CoV-2 detection in OSNs is extremely rare both in human and hamster OEs. A likely explanation for the reduction of OR transcription is the striking reorganization of nuclear architecture observed in the OSN lineage, which disrupts multi-chromosomal compartments regulating OR expression in humans and hamsters. Our experiments uncover a novel molecular mechanism by which a virus with a very selective tropism can elicit persistent transcriptional changes in cells that evade it, contributing to the severity of COVID-19.

4.
Richard C. Gerkin; Kathrin Ohla; Maria Geraldine Veldhuizen; Paule V. Joseph; Christine E. Kelly; Alyssa J. Bakke; Kimberley E. Steele; Michael C. Farruggia; Robert Pellegrino; Marta Y. Pepino; Cédric Bouysset; Graciela M. Soler; Veronica Pereda-Loth; Michele Dibattista; Keiland W. Cooper; Ilja Croijmans; Antonella Di Pizio; M. Hakan Ozdener; Alexander W. Fjaeldstad; Cailu Lin; Mari A. Sandell; Preet B. Singh; V. Evelyn Brindha; Shannon B. Olsson; Luis R. Saraiva; Gaurav Ahuja; Mohammed K. Alwashahi; Surabhi Bhutani; Anna D'Errico; Marco A. Fornazieri; Jérôme Golebiowski; Liang-Dar Hwang; Lina Öztürk; Eugeni Roura; Sara Spinelli; Katherine L. Whitcroft; Farhoud Faraji; Florian Ph.S Fischmeister; Thomas Heinbockel; Julien W. Hsieh; Caroline Huart; Iordanis Konstantinidis; Anna Menini; Gabriella Morini; Jonas K. Olofsson; Carl M. Philpott; Denis Pierron; Vonnie D. C. Shields; Vera V. Voznessenskaya; Javier Albayay; Aytug Altundag; Moustafa Bensafi; María Adelaida Bock; Orietta Calcinoni; William Fredborg; Christophe Laudamiel; Juyun Lim; Johan N. Lundström; Alberto Macchi; Pablo Meyer; Shima T. Moein; Enrique Santamaría; Debarka Sengupta; Paloma Paloma Domínguez; Hüseyin Yanık; Sanne Boesveldt; Jasper H. B. de Groot; Caterina Dinnella; Jessica Freiherr; Tatiana Laktionova; Sajidxa Mariño; Erminio Monteleone; Alexia Nunez-Parra; Olagunju Abdulrahman; Marina Ritchie; Thierry Thomas-Danguin; Julie Walsh-Messinger; Rashid Al Abri; Rafieh Alizadeh; Emmanuelle Bignon; Elena Cantone; Maria Paola Cecchini; Jingguo Chen; Maria Dolors Guàrdia; Kara C. Hoover; Noam Karni; Marta Navarro; Alissa A. Nolden; Patricia Portillo Mazal; Nicholas R. Rowan; Atiye Sarabi-Jamab; Nicholas S. Archer; Ben Chen; Elizabeth A. Di Valerio; Emma L. Feeney; Johannes Frasnelli; Mackenzie Hannum; Claire Hopkins; Hadar Klein; Coralie Mignot; Carla Mucignat; Yuping Ning; Elif E. Ozturk; Mei Peng; Ozlem Saatci; Elizabeth A. Sell; Carol H. Yan; Raul Alfaro; Cinzia Cecchetto; Gérard Coureaud; Riley D. Herriman; Jeb M. Justice; Pavan Kumar Kaushik; Sachiko Koyama; Jonathan B. Overdevest; Nicola Pirastu; Vicente A. Ramirez; S. Craig Roberts; Barry C. Smith; Hongyuan Cao; Hong Wang; Patrick Balungwe; Marius Baguma; Thomas Hummel; John E. Hayes; Danielle R. Reed; Masha Y. Niv; Steven D. Munger; Valentina Parma.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20157263

RESUMO

BackgroundCOVID-19 has heterogeneous manifestations, though one of the most common symptoms is a sudden loss of smell (anosmia or hyposmia). We investigated whether olfactory loss is a reliable predictor of COVID-19. MethodsThis preregistered, cross-sectional study used a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0-100 visual analog scales (VAS) for participants reporting a positive (C19+; n=4148) or negative (C19-; n=546) COVID-19 laboratory test outcome. Logistic regression models identified singular and cumulative predictors of COVID-19 status and post-COVID-19 olfactory recovery. ResultsBoth C19+ and C19-groups exhibited smell loss, but it was significantly larger in C19+ participants (mean{+/-}SD, C19+: -82.5{+/-}27.2 points; C19-: -59.8{+/-}37.7). Smell loss during illness was the best predictor of COVID-19 in both single and cumulative feature models (ROC AUC=0.72), with additional features providing negligible model improvement. VAS ratings of smell loss were more predictive than binary chemosensory yes/no-questions or other cardinal symptoms, such as fever or cough. Olfactory recovery within 40 days was reported for [~]50% of participants and was best predicted by time since illness onset. ConclusionsAs smell loss is the best predictor of COVID-19, we developed the ODoR-19 tool, a 0-10 scale to screen for recent olfactory loss. Numeric ratings [≤]2 indicate high odds of symptomatic COVID-19 (4

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20092866

RESUMO

We investigated the expression and subcellular localization of the SARS-CoV-2 receptor, angiotensin-converting enzyme 2 (ACE2), within the upper (nasal) and lower (pulmonary) respiratory tracts of healthy human donors. We detected ACE2 protein expression within the cilia organelle of ciliated airway epithelial cells, which likely represents the initial or early subcellular site of SARS-CoV-2 viral entry during respiratory transmission. We further determined whether ACE2 expression in the cilia of upper respiratory cells was influenced by patient demographics, clinical characteristics, co-morbidities, or medication use, and found no evidence that the use of angiotensin-converting enzyme inhibitors (ACEI) or angiotensin II receptor blockers (ARBs) increases ACE2 protein expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...