Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 10775, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031473

RESUMO

Shale gas exploitation has been the game-changer in energy development of the past decade. However, the existing methods of estimating gas in place in deep formations suffer from large uncertainties. Here, we demonstrate, by using novel high-pressure experimental techniques, that the gas in place within deep shale gas reservoirs can be up to five times higher than that estimated by implementing industry standard approaches. We show that the error between our laboratory approach and the standard desorption test is higher for gases with heavier compositions, which are of strongest commercial interests. The proposed instrumentation is reliable for deep formations and, provides quick assessment of the potential for the gas in place, which could be useful for assessing hydrocarbon reservoirs, and the potential for geological carbon sequestration of a given formation.

2.
Nano Lett ; 20(5): 3611-3619, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32267704

RESUMO

The search for new nanostructural topologies composed of elemental carbon is driven by technological opportunities as well as the need to understand the structure and evolution of carbon materials formed by planetary shock impact events and in laboratory syntheses. We describe two new families of diamond-graphene (diaphite) phases constructed from layered and bonded sp3 and sp2 nanostructural units and provide a framework for classifying the members of this new class of materials. The nanocomposite structures are identified within both natural impact diamonds and laboratory-shocked samples and possess diffraction features that have previously been assigned to lonsdaleite and postgraphite phases. The diaphite nanocomposites represent a new class of high-performance carbon materials that are predicted to combine the superhard qualities of diamond with high fracture toughness and ductility enabled by the graphitic units and the atomically defined interfaces between the sp3- and sp2-bonded nanodomains.

3.
Sci Rep ; 9(1): 10334, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31316094

RESUMO

Diamond is a material of immense technological importance and an ancient signifier for wealth and societal status. In geology, diamond forms as part of the deep carbon cycle and typically displays a highly ordered cubic crystal structure. Impact diamonds, however, often exhibit structural disorder in the form of complex combinations of cubic and hexagonal stacking motifs. The structural characterization of such diamonds remains a challenge. Here, impact diamonds from the Popigai crater were characterized with a range of techniques. Using the MCDIFFaX approach for analysing X-ray diffraction data, hexagonality indices up to 40% were found. The effects of increasing amounts of hexagonal stacking on the Raman spectra of diamond were investigated computationally and found to be in excellent agreement with trends in the experimental spectra. Electron microscopy revealed nanoscale twinning within the cubic diamond structure. Our analyses lead us to propose a systematic protocol for assigning specific hexagonality attributes to the mineral designated as lonsdaleite among natural and synthetic samples.

4.
Sci Rep ; 8(1): 4313, 2018 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-29511264

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

5.
Sci Rep ; 7(1): 14838, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29093572

RESUMO

The permeability of shales is important, because it controls where oil and gas resources can migrate to and where in the Earth hydrocarbons are ultimately stored. Shales have a well-known anisotropic directional permeability that is inherited from the depositional layering of sedimentary laminations, where the highest permeability is measured parallel to laminations and the lowest permeability is perpendicular to laminations. We combine state of the art laboratory permeability experiments with high-resolution X-ray computed tomography and for the first time can quantify the three-dimensional interconnected pathways through a rock that define the anisotropic behaviour of shales. Experiments record a physical anisotropy in permeability of one to two orders of magnitude. Two- and three-dimensional analyses of micro- and nano-scale X-ray computed tomography illuminate the interconnected pathways through the porous/permeable phases in shales. The tortuosity factor quantifies the apparent decrease in diffusive transport resulting from convolutions of the flow paths through porous media and predicts that the directional anisotropy is fundamentally controlled by the bulk rock mineral geometry. Understanding the mineral-scale control on permeability will allow for better estimations of the extent of recoverable reserves in shale gas plays globally.

6.
Astrobiology ; 16(11): 900-912, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27870583

RESUMO

Large bodies, such as the Moon, that have remained relatively unaltered for long periods of time have the potential to preserve a record of organic chemical processes from early in the history of the Solar System. A record of volatiles and impactors may be preserved in buried lunar regolith layers that have been capped by protective lava flows. Of particular interest is the possible preservation of prebiotic organic materials delivered by ejected fragments of other bodies, including those originating from the surface of early Earth. Lava flow layers would shield the underlying regolith and any carbon-bearing materials within them from most of the effects of space weathering, but the encapsulated organic materials would still be subject to irradiation before they were buried by regolith formation and capped with lava. We have performed a study to simulate the effects of solar radiation on a variety of organic materials mixed with lunar and meteorite analog substrates. A fluence of ∼3 × 1013 protons cm-2 at 4-13 MeV, intended to be representative of solar energetic particles, has little detectable effect on low-molecular-weight (≤C30) hydrocarbon structures that can be used to indicate biological activity (biomarkers) or the high-molecular-weight hydrocarbon polymer poly(styrene-co-divinylbenzene), and has little apparent effect on a selection of amino acids (≤C9). Inevitably, more lengthy durations of exposure to solar energetic particles may have more deleterious effects, and rapid burial and encapsulation will always be more favorable to organic preservation. Our data indicate that biomarker compounds that may be used to infer biological activity on their parent planet can be relatively resistant to the effects of radiation and may have a high preservation potential in paleoregolith layers on the Moon. Key Words: Radiation-Moon-Regolith-Amino acids-Biomarkers. Astrobiology 16, 900-912.


Assuntos
Meio Ambiente Extraterreno , Lua , Compostos Orgânicos/análise , Radiação , Aminoácidos/análise , Biomarcadores/análise , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos/análise , Polímeros/análise , Solventes
7.
Astrobiology ; 15(2): 154-68, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25615648

RESUMO

The organic record of Earth older than ∼3.8 Ga has been effectively erased. Some insight is provided to us by meteorites as well as remote and direct observations of asteroids and comets left over from the formation of the Solar System. These primitive objects provide a record of early chemical evolution and a sample of material that has been delivered to Earth's surface throughout the past 4.5 billion years. Yet an effective chronicle of organic evolution on all Solar System objects, including that on planetary surfaces, is more difficult to find. Fortunately, early Earth would not have been the only recipient of organic matter-containing objects in the early Solar System. For example, a recently proposed model suggests the possibility that volatiles, including organic material, remain archived in buried paleoregolith deposits intercalated with lava flows on the Moon. Where asteroids and comets allow the study of processes before planet formation, the lunar record could extend that chronicle to early biological evolution on the planets. In this study, we use selected free and polymeric organic materials to assess the hypothesis that organic matter can survive the effects of heating in the lunar regolith by overlying lava flows. Results indicate that the presence of lunar regolith simulant appears to promote polymerization and, therefore, preservation of organic matter. Once polymerized, the mineral-hosted newly formed organic network is relatively protected from further thermal degradation. Our findings reveal the thermal conditions under which preservation of organic matter on the Moon is viable.


Assuntos
Evolução Química , Exobiologia/métodos , Lua , Sistema Solar , Planeta Terra , Cromatografia Gasosa-Espectrometria de Massas , Geologia , Temperatura Alta , Hidroxibutiratos/química , Meteoroides , Planetas Menores , Planetas , Solventes , Temperatura , Erupções Vulcânicas
8.
Astrobiology ; 10(9): 933-51, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21118025

RESUMO

The Panoramic Camera (PanCam) instrument will provide visible-near IR multispectral imaging of the ExoMars rover's surroundings to identify regions of interest within the nearby terrain. This multispectral capability is dependant upon the 12 preselected "geological" filters that are integrated into two wide-angle cameras. First devised by the Imager for Mars Pathfinder team to detect iron oxides, this baseline filter set has remained largely unchanged for subsequent missions (Mars Exploration Rovers, Beagle 2, Phoenix) despite the advancing knowledge of the mineralogical diversity on Mars. Therefore, the geological filters for the ExoMars PanCam will be redesigned to accommodate the astrobiology focus of ExoMars, where hydrated mineral terrains (evidence of past liquid water) will be priority targets. Here, we conduct an initial investigation into new filter wavelengths for the ExoMars PanCam and present results from tests performed on Mars analog rocks. Two new filter sets were devised: one with filters spaced every 50 nm ("F1-12") and another that utilizes a novel filter selection method based upon hydrated mineral reflectance spectra ("F2-12"). These new filter sets, along with the Beagle 2 filter set (currently the baseline for the ExoMars PanCam), were tested on their ability to identify hydrated minerals and biosignatures present in Mars analog rocks. The filter sets, with varying degrees of ability, detected the spectral features of minerals jarosite, opaline silica, alunite, nontronite, and siderite present in these rock samples. None of the filter sets, however, were able to detect fossilized biomat structures and small (<2 mm) mineralogical heterogeneities present in silica sinters. Both new filter sets outperformed the Beagle 2 filters, with F2-12 detecting the most spectral features produced by hydrated minerals and providing the best discrimination between samples. Future work involving more extensive testing on Mars analog samples that exhibit a wider range of mineralogies would be the next step in carefully evaluating the new filter sets.


Assuntos
Exobiologia/instrumentação , Sedimentos Geológicos/análise , Compostos de Alumínio/análise , Compostos de Alumínio/química , Carbonatos/análise , Carbonatos/química , Compostos Férricos/análise , Compostos Férricos/química , Sedimentos Geológicos/química , Geologia/instrumentação , Geologia/métodos , Compostos de Potássio/análise , Compostos de Potássio/química , Sulfatos/análise , Sulfatos/química
9.
Lab Invest ; 88(3): 232-42, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18166974

RESUMO

Amyloid stained by Congo red is traditionally said to show apple-green birefringence in polarized light, although in practice various colors may be seen between accurately crossed polarizing filters, called polarizer and analyzer. Other colors are seen as the polarizer and analyzer are uncrossed and sometimes when the slide is rotated. Previously, there has been no satisfactory explanation of these properties. Birefringence means that a material has two refractive indices, depending on its orientation in polarized light. Birefringence can change linearly polarized light to elliptically polarized, which allows light to pass a crossed analyzer. The birefringence of orientated Congo red varied with wavelength and was maximal near its absorption peak, changing from negative (slow axis of transmission perpendicular to smears or amyloid fibrils) on the shortwave side of the peak to positive (slow axis parallel) on the longwave side. This was explained by a property of any light-absorbing substance called anomalous dispersion of the refractive index around an absorption peak. Negative birefringence gave transmission of blue, positive gave yellow, and the mixture was perceived as green. This explains how green occurs in ideal conditions. Additional or strain birefringence in the optical system, such as in glass slides, partly or completely eliminated blue or yellow, giving yellow/green or yellow, and blue/green or blue, which are commonly seen in practice and in illustrations. With uncrossing of polarizer or analyzer, birefringent effects declined and dichroic effects appeared, giving progressive changes from green to red as the plane of polarization approached the absorbing axis and from green to colorless in the opposite way. This asymmetry of effects is useful to pathologists as a confirmation of amyloid. Rather than showing 'apple-green birefringence in polarized light' as often reported, Congo red-stained amyloid, when examined between crossed polarizer and analyzer, should more accurately be said to show anomalous colors.


Assuntos
Amiloide/metabolismo , Corantes/metabolismo , Vermelho Congo , Birrefringência , Microscopia de Polarização , Refratometria , Coloração e Rotulagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...