Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(3): e0229848, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32168341

RESUMO

Animals have ubiquitous associations with microorganisms, but microbial community composition and population dynamics can vary depending upon many environmental factors, including diet. The bacterial communities present in caterpillar (Lepidoptera) guts are highly variable, even among individuals of a species. Across lepidopteran species, it is unclear if the variation in their gut bacterial communities is due to ingested bacteria with diets or responses of gut bacteria to their diet. In this study, we aimed to understand whether bacteria establish and persist in the lepidopteran gut or just pass through the gut with food. We also examined whether bacterial establishment in lepidopteran guts depended on diet. We conducted a series of experiments using axenic and gnotobiotic insect rearing methods to address these objectives. We found that bacteria were established and maintained without replacement through the larval instars of the fall armyworm (Spodoptera frugiperda) and corn earworm (Helicoverpa zea). Gut bacterial titers increased when larvae were fed gamma-irradiated corn leaves but decreased when fed a wheat germ artificial diet. However, bacterial titers of larvae fed on a pinto bean artificial diet were similar to those consuming intact plants. We also observed that microbial titers of fall armyworm and other folivorous larvae were positively related to the host body size throughout larval development. Collectively, these results suggest that the populations of bacteria present in caterpillar guts are not simply a transient community passing through the system, but rather are a dynamic component of the caterpillar gut. Sensitivity of bacterial populations to the type of diet fed to lepidopterans suggests that not all diets are equally useful for reducing variance in community structure and interpreting insect-microbe interactions.


Assuntos
Dieta , Microbioma Gastrointestinal , Larva/microbiologia , Spodoptera/microbiologia , Animais , Bactérias/isolamento & purificação , Interações entre Hospedeiro e Microrganismos , Larva/crescimento & desenvolvimento , Spodoptera/crescimento & desenvolvimento
2.
Environ Entomol ; 49(1): 159-168, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31880775

RESUMO

Neonicotinoid seed treatments are frequently used in cotton (Gossypium hirsutum L. [Malvales: Malvaceae]) production to provide protection against early-season herbivory. However, there is little known about how these applications affect extrafloral nectar (EFN), an important food resource for arthropod natural enemies. Using enzyme-linked immunosorbent assays, we found that neonicotinoids were translocated to the EFN of clothianidin- and imidacloprid-treated, greenhouse-grown cotton plants at concentrations of 77.3 ± 17.3 and 122.6 ± 11.5 ppb, respectively. We did not find differences in the quantity of EFN produced by neonicotinoid-treated cotton plants compared to untreated controls, either constitutively or after mechanical damage. Metabolomic analysis of sugars and amino acids from treated and untreated plants did not detect differences in overall composition of EFN. In bioassays, female Cotesia marginiventris (Cresson) (Hymenoptera: Braconidae) parasitoid wasps that fed on EFN from untreated, clothianidin-treated, or imidacloprid-treated plants demonstrated no difference in mortality or parasitization success. We also conducted acute toxicity assays for C. marginiventris fed on honey spiked with clothianidin and imidacloprid and established LC50 values for male and female wasps. Although LC50 values were substantially higher than neonicotinoid concentrations detected in EFN, caution should be used when translating these results to the field where other stressors could alter the effects of neonicotinoids. Moreover, there are a wide range of possible sublethal impacts of neonicotinoids, none of which were explored here. Our results suggest that EFN is a potential route of exposure of neonicotinoids to beneficial insects and that further field-based studies are warranted.


Assuntos
Inseticidas , Malvaceae , Animais , Feminino , Gossypium , Malvales , Neonicotinoides , Nitrocompostos , Néctar de Plantas
3.
Proc Natl Acad Sci U S A ; 116(32): 15991-15996, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31332013

RESUMO

Plants produce suites of defenses that can collectively deter and reduce herbivory. Many defenses target the insect digestive system, with some altering the protective peritrophic matrix (PM) and causing increased permeability. The PM is responsible for multiple digestive functions, including reducing infections from potential pathogenic microbes. In our study, we developed axenic and gnotobiotic methods for fall armyworm (Spodoptera frugiperda) and tested how particular members present in the gut community influence interactions with plant defenses that can alter PM permeability. We observed interactions between gut bacteria with plant resistance. Axenic insects grew more but displayed lower immune-based responses compared with those possessing Enterococcus, Klebsiella, and Enterobacter isolates from field-collected larvae. While gut bacteria reduced performance of larvae fed on plants, none of the isolates produced mortality when injected directly into the hemocoel. Our results strongly suggest that plant physical and chemical defenses not only act directly upon the insect, but also have some interplay with the herbivore's microbiome. Combined direct and indirect, microbe-mediated assaults by maize defenses on the fall armyworm on the insect digestive and immune system reduced growth and elevated mortality in these insects. These results imply that plant-insect interactions should be considered in the context of potential mediation by the insect gut microbiome.


Assuntos
Enterobacteriaceae/fisiologia , Imunidade Vegetal , Spodoptera/microbiologia , Zea mays/imunologia , Zea mays/parasitologia , Animais , Quitinases/metabolismo , Genótipo , Herbivoria/fisiologia , Interações Hospedeiro-Patógeno , Spodoptera/crescimento & desenvolvimento , Spodoptera/ultraestrutura , Síndrome , Tricomas/metabolismo , Zea mays/genética , Zea mays/ultraestrutura
4.
Sci Rep ; 9(1): 2792, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808905

RESUMO

Symbioses between insects and microbes are ubiquitous, but vary greatly in terms of function, transmission mechanism, and location in the insect. Lepidoptera (butterflies and moths) are one of the largest and most economically important insect orders; yet, in many cases, the ecology and functions of their gut microbiomes are unresolved. We used high-throughput sequencing to determine factors that influence gut microbiomes of field-collected fall armyworm (Spodoptera frugiperda) and corn earworm (Helicoverpa zea). Fall armyworm midgut bacterial communities differed from those of corn earworm collected from the same host plant species at the same site. However, corn earworm bacterial communities differed between collection sites. Subsequent experiments using fall armyworm evaluating the influence of egg source and diet indicated that that host plant had a greater impact on gut communities. We also observed differences between regurgitant (foregut) and midgut bacterial communities of the same insect host, suggesting differential colonization. Our findings indicate that host plant is a major driver shaping gut microbiota, but differences in insect physiology, gut region, and local factors can also contribute to variation in microbiomes. Additional studies are needed to assess the mechanisms that affect variation in insect microbiomes, as well as the ecological implications of this variability in caterpillars.


Assuntos
Biodiversidade , Microbioma Gastrointestinal , Plantas , Spodoptera/microbiologia , Animais , Herbivoria , Simbiose
5.
Plant Cell Environ ; 42(3): 1078-1086, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30151965

RESUMO

Plants possess a suite of traits that make them challenging to consume by insect herbivores. Plant tissues are recalcitrant, have low levels of protein, and may be well defended by chemicals. Insects use diverse strategies for overcoming these barriers, including co-opting metabolic activities from microbial associates. In this review, we discuss the co-option of bacteria and fungi in the herbivore gut. We particularly focus upon chewing, folivorous insects (Coleoptera and Lepidoptera) and discuss the impacts of microbial co-option on herbivore performance and plant responses. We suggest that there are two components to microbial co-option: fixed and plastic relationships. Fixed relationships are involved in integral dietary functions and can be performed by microbial enzymes co-opted into the genome or by stably transferred associates. In contrast, the majority of gut symbionts appear to be looser and perform more facultative, context-dependent functions. This more plastic, variable co-option of bacteria likely produces a greater number of insect phenotypes, which interact differently with plant hosts. By altering plant detection of herbivory or mediating insect interactions with plant defensive compounds, microbes can effectively improve herbivore performance in real time within and between generations.


Assuntos
Microbioma Gastrointestinal/fisiologia , Herbivoria , Insetos/fisiologia , Folhas de Planta/fisiologia , Fenômenos Fisiológicos Vegetais , Simbiose , Animais , Besouros/microbiologia , Besouros/fisiologia , Insetos/microbiologia , Lepidópteros/microbiologia , Lepidópteros/fisiologia , Simbiose/fisiologia
6.
Neurohospitalist ; 8(1): 35-37, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29276562

RESUMO

Hyoid bone elongation is an uncommon cause of stroke. Here, we report a case of hyoid bone elongation causing localized trauma to the internal carotid artery, resulting in multiple strokes. A 32-year-old woman presented with unilateral weakness and history of a recent stroke. Imaging revealed the greater horn of the hyoid bone extending between the external and internal carotid with associated thrombus at the carotid bifurcation and acute stroke. Carotid ultrasound demonstrated movement of the hyoid bone in and out of the space between the external carotid artery and internal carotid artery with neck rotation. Treatment involved anticoagulation and partial hyoid bone resection. After resection, the stroke symptoms had not recurred in the patient. Hyoid bone-related carotid injury is an infrequent etiology of stroke, with no established treatment guidelines. Partial hyoid bone resection and antithrombotic therapy are likely a reasonably safe and effective treatment.

7.
Mol Plant Microbe Interact ; 30(2): 127-137, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28027025

RESUMO

Mechanical damage caused by insect feeding along with components present in insect saliva and oral secretions are known to induce jasmonic acid-mediated defense responses in plants. This study investigated the effects of bacteria from oral secretions of the fall armyworm Spodoptera frugiperda on herbivore-induced defenses in tomato and maize plants. Using culture-dependent methods, we identified seven different bacterial isolates belonging to the family Enterobacteriacea from the oral secretions of field-collected caterpillars. Two isolates, Pantoea ananatis and Enterobacteriaceae-1, downregulated the activity of the plant defensive proteins polyphenol oxidase and trypsin proteinase inhibitors (trypsin PI) but upregulated peroxidase (POX) activity in tomato. A Raoultella sp. and a Klebsiella sp. downregulated POX but upregulated trypsin PI in this plant species. Conversely, all of these bacterial isolates upregulated the expression of the herbivore-induced maize proteinase inhibitor (mpi) gene in maize. Plant treatment with P. ananatis and Enterobacteriaceae-1 enhanced caterpillar growth on tomato but diminished their growth on maize plants. Our results highlight the importance of herbivore-associated microbes and their ability to mediate insect plant interactions differently in host plants fed on by the same herbivore.


Assuntos
Microbioma Gastrointestinal , Solanum lycopersicum/imunologia , Spodoptera/microbiologia , Zea mays/imunologia , Animais , Bactérias/isolamento & purificação , Herbivoria , Proteínas de Insetos/metabolismo , Larva/crescimento & desenvolvimento , Solanum lycopersicum/parasitologia , Saliva/enzimologia , Proteínas e Peptídeos Salivares/metabolismo , Aumento de Peso , Zea mays/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...