Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 232(2): 461-463, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34453761
2.
Am J Bot ; 108(2): 320-333, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33638194

RESUMO

PREMISE: In semiarid regions, decreasing rainfall presents a challenge to perennial seedlings that must reach sufficient size to survive the first year's seasonal drought. Attaining a large storage organ size has been hypothesized to enhance drought resilience in geophytes, but building larger storage organs requires faster growth, but paradoxically, some traits that confer faster growth are highly sensitive to drought. We examined whether tuber size confers greater drought resilience in seedlings of four closely related geophytic species of Pelargonium. METHODS: We imposed two drought treatments when seedlings were 2 months old: chronic low water and acute water restriction for 10 days. Plants in the acute dry-down treatment were then rewatered at control levels. We compared morphological and ecophysiological traits at 2, 3, and 6 months of age and used mixed-effects models to identify traits determining tuber biomass at dormancy. RESULTS: Despite a 10-fold variation in size, species had similar physiological trait values under well-watered conditions. Chronic and acute droughts negatively affected tuber size at the end of the season, but only in the two species with large tubers. Chronic drought did not affect physiological traits of any species, but in response to acute drought, larger species showed reduced photosynthetic performance. Canopy area was the best predictor of final tuber biomass. CONCLUSIONS: Contradictory to the hypothesis that large tubers provide greater drought resiliency, small Pelargonium seedlings actually had higher drought tolerance, although at the expense of more vigorous growth compared to species with larger tubers under well-watered conditions.


Assuntos
Secas , Plântula , Biomassa , Fotossíntese , Água
3.
Am J Bot ; 107(5): 735-748, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32399959

RESUMO

PREMISE: The functional significance of leaf margins has long been debated. In this study, we explore influences of climate, leaf lobing, woodiness, and shared evolutionary history on two leaf margin traits within the genus Pelargonium. METHODS: Leaves from 454 populations of Pelargonium (161 species) were collected in the Greater Cape Floristic Region and scored for tooth presence/absence and degree of lobing. Tooth density (number of teeth per interior perimeter distance) was calculated for a subset of these. We compared five hypotheses to explain tooth presence and density using mixed effect models. RESULTS: Tooth presence/absence was best predicted by the interaction of leaf lobing and mean annual temperature (MAT), but often in patterns opposite those previously reported: species were more likely to be toothed with warmer temperatures, particularly for unlobed and highly lobed leaves. In contrast, tooth density was best predicted by the interaction of MAT and the season of most rain; density declines with temperature as consistent with expectations, but only in winter-rain dominated areas. Woody and nonwoody species within Pelargonium have similar associations between tooth presence/absence and MAT, contrary to the expectation that patterns within nonwoody species would be insignificant. CONCLUSIONS: We conclude Pelargonium leaf margins show predictable responses to climate, but these responses are complex and can contradict those found for global patterns across plant communities.


Assuntos
Clima , Pelargonium , Evolução Biológica , Filogenia , Folhas de Planta
4.
Mol Phylogenet Evol ; 137: 33-43, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30926482

RESUMO

The predominantly South-African plant genus Pelargonium L'Hér. (Geraniaceae) displays remarkable morphological diversity, several basic chromosome numbers as well as high levels of organelle genomic rearrangements, and represents the 7th largest Cape Floristic Region clade. In this study, we reconstructed a phylogenetic tree based on 74 plastome exons and nuclear rDNA ITS regions for 120 species, which represents 43% taxon coverage for Pelargonium. We also performed a dating analysis to examine the timing of the major radiations in the genus. Phylogenetic analyses of nucleotide, amino acid, and ITS alignments confirmed the previously-documented subgeneric split into five main clades ((C1,C2),(B(A1,A2))) although clade only A1 received low bootstrap support. Using calibration evidence from a range of sources the Pelargonium crown age was estimated to be 9.7 My old, much younger than previous estimates for the genus but similar to recent studies of other Cape Floristic lineages that are part of both Fynbos and Succulent Karoo biomes.


Assuntos
Genomas de Plastídeos , Pelargonium/crescimento & desenvolvimento , Pelargonium/genética , Filogenia , Calibragem , Variação Genética , Funções Verossimilhança , Fatores de Tempo
5.
New Phytol ; 219(2): 794-807, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29749630

RESUMO

Functional traits in closely related lineages are expected to vary similarly along common environmental gradients as a result of shared evolutionary and biogeographic history, or legacy effects, and as a result of biophysical tradeoffs in construction. We test these predictions in Pelargonium, a relatively recent evolutionary radiation. Bayesian phylogenetic mixed effects models assessed, at the subclade level, associations between plant height, leaf area, leaf nitrogen content and leaf mass per area (LMA), and five environmental variables capturing temperature and rainfall gradients across the Greater Cape Floristic Region of South Africa. Trait-trait integration was assessed via pairwise correlations within subclades. Of 20 trait-environment associations, 17 differed among subclades. Signs of regression coefficients diverged for height, leaf area and leaf nitrogen content, but not for LMA. Subclades also differed in trait-trait relationships and these differences were modulated by rainfall seasonality. Leave-one-out cross-validation revealed that whether trait variation was better predicted by environmental predictors or trait-trait integration depended on the clade and trait in question. Legacy signals in trait-environment and trait-trait relationships were apparently lost during the earliest diversification of Pelargonium, but then retained during subsequent subclade evolution. Overall, we demonstrate that global-scale patterns are poor predictors of patterns of trait variation at finer geographic and taxonomic scales.


Assuntos
Evolução Biológica , Meio Ambiente , Geraniaceae/fisiologia , Clima , Modelos Lineares , Filogenia , Característica Quantitativa Herdável
6.
Am J Bot ; 105(4): 667-676, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29664993

RESUMO

PREMISE OF THE STUDY: While tradeoffs among mechanical and conductive functions have been well investigated in woody stems, these tradeoffs are relatively unexplored in petioles, the structural link between stems and laminas. We investigated size-independent scaling relationships between cross-sectional areas of structural and vascular tissues, relationships between tissue areas of xylem and phloem, vessel packing within xylem, and scaling of vascular and structural tissues with lamina traits. METHODS: We examined allometric relationships among petiole tissues and as a function of lamina and petiole size variation on eleven species of Pelargonium. From transverse sections of methacrylate-embedded tissue, we measured the cross-sectional areas of all tissues within the petiole and vessel lumen, and cell wall areas of each vessel. Allometric scaling relationships were analyzed using standardized major axis regressions. KEY RESULTS: Pelargonium petiole vessels were packed as predicted by Sperry's packing rule for woody stems. In contrast to woody stems, there was no evidence of a tradeoff between vessel area and fiber area. Within cross-sections, more xylem was produced than phloem. Among bundles, xylem and phloem scaling relationships varied with bundle position. Except for lamina dry mass and petiole fiber cross-sectional area, petiole and lamina traits were independent. CONCLUSIONS: Petioles share vascular tissue traits with stems despite derivation from leaf primordia. We did not find evidence for a tradeoff between structural and vascular tissues, in part because fibers occur outside the xylem. We propose this separation of conduction and support underlies observed developmental and evolutionary plasticity in petioles.


Assuntos
Folhas de Planta/anatomia & histologia , Caules de Planta/anatomia & histologia , Membrana Basal/anatomia & histologia , Membrana Basal/fisiologia , Pelargonium/anatomia & histologia , Pelargonium/fisiologia , Floema/anatomia & histologia , Floema/fisiologia , Folhas de Planta/fisiologia , Caules de Planta/fisiologia , Xilema/anatomia & histologia , Xilema/fisiologia
7.
Ann Bot ; 121(3): 549-560, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29293992

RESUMO

Background and Aims: Much of morphological evolution in flowers has arisen from pollinator-mediated selection, often manifest as a match between the length of the pollinator's proboscis and the depth of tubular corollas or spurs. We investigate development, growth and homology of the unique nectar tube of Pelargonium, frequently described as 'a spur adnate to the pedicel'. Methods: We focused on two species. The nectar tube of P. ionidiflorum is three times longer than that of P. odoratissimum. Light and scanning electron microscopy were carried out, and daily growth measurements were used to compare nectar tube development and vascular patterns. Key Results: Nectar tubes in both species are initiated centripetally to the dorsal sepal in a space created by lateral displacement of two antepetalous stamens. The cavity deepens through subsequent intercalary growth of the receptacle that proceeds at the same rate in both species until tubes reach approx. 10 mm in length. Differences in final nectar tube lengths arise via an increase in the rate and duration of growth of the receptacle that begins just before anthesis (floral opening) and continues for several days past anthesis in P. ionidiflorum but does not occur in P. odoratissimum. Epidermal cells of the dorsal surface of the nectar tube in P. ionidiflorum are approx. 1.6 times longer than those in P. odoratissimum. Histological sections show no evidence that the nectar tube is a spur that became evolutionarily fused to the pedicel. Conclusions: Nectar tubes in Pelargonium are localized cavities that form in the receptacle via intercalary growth. Differences in the rate and duration of growth just prior to and following anthesis underlie differences in final tube lengths. Because differences in cell lengths do not fully account for differences in nectar tube lengths, evolutionary diversification must involve changes in both cell cycle and cell expansion.


Assuntos
Flores/crescimento & desenvolvimento , Pelargonium/crescimento & desenvolvimento , Flores/anatomia & histologia , Flores/citologia , Flores/ultraestrutura , Microscopia , Microscopia Eletrônica de Varredura , Pelargonium/anatomia & histologia , Pelargonium/citologia , Pelargonium/ultraestrutura
8.
Am J Bot ; 104(1): 72-82, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28062407

RESUMO

PREMISE OF THE STUDY: Symbioses are almost universal, but little is known about how symbiont abundance can affect host performance. Many orchids undergo vegetative dormancy and frequent and protracted dormancy have been associated with population declines. If mycorrhizal fungi affect host plant performance, those effects are likely to alter patterns of vegetative dormancy. The goal of this study was to determine whether the abundance of mycorrhizal fungi is related to the likelihood of entering dormancy and whether fungal abundance varied with dormancy duration in the federally listed threatened orchid Isotria medeoloides. METHODS: We studied three populations of the threatened North American terrestrial orchid Isotria medeoloides using long-term emergence data and evaluated the relationship between the abundance of associated mycorrhizal fungi (Russulaceae) and orchid dormancy and emergence. Mycorrhizal fungi in soil adjacent to orchids were quantified in two ways. First, ectomycorrhizal (ECM) fungi on adjacent root tips were identified using DNA sequencing to determine their phylogenetic relationship to fungi that are known to form mycorrhizae with I. medeoloides. Second, we extracted DNA from soil samples and used quantitative real-time PCR to estimate the abundance of Russulaceae hyphae adjacent to each orchid. KEY RESULTS: We found that the abundance of Russulaceae, both in the soil and on nearby ECM root tips, was significantly related to orchid prior emergence. Both abundance and prior emergence history were predictive of future emergence. CONCLUSIONS: These results suggest that the abundance of mycorrhizal fungi can influence orchid population dynamics and is an essential component of orchid conservation.


Assuntos
Basidiomycota/fisiologia , Micorrizas/fisiologia , Orchidaceae/microbiologia , Simbiose/fisiologia , Basidiomycota/classificação , Basidiomycota/genética , DNA Fúngico/química , DNA Fúngico/genética , Hifas/genética , Hifas/fisiologia , Micorrizas/classificação , Micorrizas/genética , Orchidaceae/fisiologia , Filogenia , Dormência de Plantas , Raízes de Plantas/microbiologia , Análise de Sequência de DNA , Microbiologia do Solo , Especificidade da Espécie
9.
Am Nat ; 185(4): 525-37, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25811086

RESUMO

Evolutionary radiations with extreme levels of diversity present a unique opportunity to study the role of the environment in plant evolution. If environmental adaptation played an important role in such radiations, we expect to find associations between functional traits and key climatic variables. Similar trait-environment associations across clades may reflect common responses, while contradictory associations may suggest lineage-specific adaptations. Here, we explore trait-environment relationships in two evolutionary radiations in the fynbos biome of the highly biodiverse Cape Floristic Region (CFR) of South Africa. Protea and Pelargonium are morphologically and evolutionarily diverse genera that typify the CFR yet are substantially different in growth form and morphology. Our analytical approach employs a Bayesian multiple-response generalized linear mixed-effects model, taking into account covariation among traits and controlling for phylogenetic relationships. Of the pairwise trait-environment associations tested, 6 out of 24 were in the same direction and 2 out of 24 were in opposite directions, with the latter apparently reflecting alternative life-history strategies. These findings demonstrate that trait diversity within two plant lineages may reflect both parallel and idiosyncratic responses to the environment, rather than all taxa conforming to a global-scale pattern. Such insights are essential for understanding how trait-environment associations arise and how they influence species diversification.


Assuntos
Evolução Biológica , Pelargonium/genética , Proteaceae/genética , Adaptação Fisiológica , Teorema de Bayes , Clima , Meio Ambiente , Fenótipo , Filogenia , Folhas de Planta/anatomia & histologia , África do Sul
10.
Am J Bot ; 100(7): 1306-21, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23825139

RESUMO

PREMISE OF THE STUDY: Trait integration may improve prediction of species and lineage responses to future climate change more than individual traits alone, particularly when analyses incorporate effects of phylogenetic relationships. The South African genus Pelargonium contains divergent major clades that have radiated along the same seasonal aridity gradient, presenting the opportunity to ask whether patterns of evolution in mean leaf trait values are achieved through the same set of coordinated changes among traits in each clade. METHODS: Seven leaf traits were measured on field-collected leaves from one-third of the species (98) of the genus. Trait relationships were examined using phylogenetic regression within major clades. Disparity analysis determined whether the course of trait evolution paralleled historical climate change events. KEY RESULTS: Divergence in mean trait values between sister clades A1 and A2 was consistent with expectations for leaves differing in longevity, despite strong similarity between clades in trait interactions. No traits in either clade exhibited significant relationships with multivariate climate axes, with one exception. Species in clades C and A2 included in this study occupied similar environments. These clades had similar values of individual trait means, except for δ(13)C, but they exhibited distinctive patterns of trait integration. CONCLUSIONS: Differing present-day patterns of trait integration are consistent with interpretations of adaptive responses to the prevailing climate at the time of each clade's origin. These differing patterns of integration are likely to exert strong effects on clade-level responses to future climate change in the winter rainfall region of South Africa.


Assuntos
Adaptação Fisiológica/genética , Evolução Biológica , Pelargonium/anatomia & histologia , Pelargonium/genética , Regulação da Expressão Gênica de Plantas , Pelargonium/fisiologia , Chuva , Estações do Ano , África do Sul , Fatores de Tempo
11.
Ann Bot ; 111(5): 781-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23471009

RESUMO

BACKGROUND AND AIMS: In bryophytes the sporophyte offspring are in contact with, nourished from, and partially surrounded by the maternal gametophyte throughout their lifespan. During early development, the moss sporophyte is covered by the calyptra, a cap of maternal gametophyte tissue that has a multilayered cuticle. In this study the effects on sporophyte offspring fitness of removing the maternal calyptra cuticle, in combination with dehydration stress, is experimentally determined. METHODS: Using the moss Funaria hygrometrica, calyptra cuticle waxes were removed by chemical extraction and individuals were exposed to a short-term dehydration event. Sporophytes were returned to high humidity to complete development and then aspects of sporophyte survival, development, functional morphology, and reproductive output were measured. KEY RESULTS: It was found that removal of calyptra cuticle under low humidity results in significant negative impacts to moss sporophyte fitness, resulting in decreased survival, increased tissue damage, incomplete sporophyte development, more peristome malformations, and decreased reproductive output. CONCLUSIONS: This study represents the strongest evidence to date that the structure of the calyptra cuticle functions in dehydration protection of the immature moss sporophyte. The investment in a maternal calyptra with a multilayered cuticle increases offspring fitness and provides a functional explanation for calyptra retention across mosses. The moss calyptra may represent the earliest occurance of maternal protection via structural provisioning of a cuticle in green plants.


Assuntos
Bryopsida/fisiologia , Epiderme Vegetal/fisiologia , Bryopsida/crescimento & desenvolvimento , Bryopsida/ultraestrutura , Desidratação , Células Germinativas Vegetais/citologia , Células Germinativas Vegetais/crescimento & desenvolvimento , Células Germinativas Vegetais/ultraestrutura , Epiderme Vegetal/citologia , Reprodução
12.
Am J Bot ; 99(5): 954-60, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22539514

RESUMO

PREMISE OF THE STUDY: Sharp climatic gradients in South Africa and in particular in the Cape Floristic Region (CFR) provide a diversity of niches over short distances that may have promoted ecological diversification in local clades. Here we measured the extent to which closely related species occupy divergent climates and test whether niche lability is correlated with higher species diversity in the genus. METHOD: We integrated phylogenetic information and environmental niche models (ENM) to assess the levels of climate niche conservatism. ENMs for 113 species of Pelargonium were calculated using maximum entropy. We used two tests, one assessing climate niche equivalency and the other testing niche similarity between sister species and within sections. We also examined whether niche similarity was correlated with phylogenetic relatedness across the genus. KEY RESULTS: Niche similarity was mostly independent of phylogenetic relationships. Compared to random expectations, 23% of closely related species pairs had climate niches that were more similar, and only 6.5% were more disparate; the remaining 70% of comparisons had similarities that fell within random expectations. Similar trends were observed when analyses were restricted to only sister species pairs. Although the overall proportion of niche divergence was low, this was significantly related to sectional diversity. We also found a negative relationship between diversity and the proportion of random niches. CONCLUSIONS: Lack of widespread niche conservatism in a highly heterogeneous landscape and few instances of significant climate niche lability suggest that an adaptive divergence process was implicated in the Pelargonium radiation.


Assuntos
Biodiversidade , Clima , Pelargonium/classificação , Modelos Biológicos , Filogenia , África do Sul
13.
Am J Bot ; 99(1): 14-22, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22210839

RESUMO

PREMISE OF THE STUDY: In vascular plants, leaf primordia prevent desiccation of the shoot apical meristem. Lacking leaves, the undifferentiated moss sporophyte apex is covered by the calyptra, a cap of maternal gametophyte tissue that is hypothesized to function in desiccation protection. Herein, we compare cuticle development on the calyptra and sporophyte to assess the calyptra's potential to protect the sporophyte from desiccation. As the first comprehensive study of moss sporophyte cuticle development, this research broadens our perspectives on cuticle development and evolution across embryophytes. METHODS: Calyptrae and sporophytes at nine developmental stages were collected from a laboratory-grown population of the moss Funaria hygrometrica. Tissues were embedded, sectioned, then examined using transmission electron microscopy. Epidermal cells were measured for thickness of the cuticle layers, cell wall thickness, and lumen size. KEY RESULTS: The calyptra cuticle develops precociously and reaches maturity before the sporophyte cuticle. Calyptrae are covered by a four-layered cuticle at all stages, whereas sporophyte cuticle maturation is delayed until sporangium formation. The development and thickening of the sporophyte cuticle occurs in an acropetal wave. CONCLUSIONS: A multilayered calyptra cuticle at the earliest developmental stages is consistent with its ability to protect the immature sporophyte from desiccation. Young sporophytes lack a complex cuticle and thus may require protection, whereas in older sporophytes a mature cuticle develops. The moss calyptra is not a vestigial structure, but rather the calyptra's role in preventing desiccation offers a functional explanation for calyptra retention during the 450 Myr of moss evolution.


Assuntos
Bryopsida/crescimento & desenvolvimento , Parede Celular/metabolismo , Células Germinativas Vegetais/crescimento & desenvolvimento , Epiderme Vegetal/crescimento & desenvolvimento , Bryopsida/ultraestrutura , Dessecação , Células Germinativas Vegetais/ultraestrutura , Microscopia Eletrônica de Transmissão , Epiderme Vegetal/ultraestrutura
14.
Am J Bot ; 98(5): 915-22, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21613189

RESUMO

PREMISE OF THE STUDY: Trees and shrubs tend to occupy different niches within and across ecosystems; therefore, traits related to their resource use and life history are expected to differ. Here we analyzed how growth form is related to variation in integration among vessel traits, wood density, and height. We also considered the ecological and evolutionary consequences of such differences. METHOD: In a sample of 200 woody plant species (65 shrubs and 135 trees) from Argentina, Mexico, and the United States, standardized major axis (SMA) regression, correlation analyses, and ANOVA were used to determine whether relationships among traits differed between growth forms. The influence of phylogenetic relationships was examined with a phylogenetic ANOVA and phylogenetically independent contrasts (PICs). A principal component analysis was conducted to determine whether trees and shrubs occupy different portions of multivariate trait space. KEY RESULTS: Wood density did not differ between shrubs and trees, but there were significant differences in vessel diameter, vessel density, theoretical conductivity, and as expected, height. In addition, relationships between vessel traits and wood density differed between growth forms. Trees showed coordination among vessel traits, wood density, and height, but in shrubs, wood density and vessel traits were independent. These results hold when phylogenetic relationships were considered. In the multivariate analyses, these differences translated as significantly different positions in multivariate trait space occupied by shrubs and trees. CONCLUSIONS: Differences in trait integration between growth forms suggest that evolution of growth form in some lineages might be associated with the degree of trait interrelation.


Assuntos
Magnoliopsida/anatomia & histologia , Madeira/anatomia & histologia , Argentina , Evolução Biológica , Magnoliopsida/crescimento & desenvolvimento , México , Análise Multivariada , Filogenia , Análise de Componente Principal , Árvores/anatomia & histologia , Árvores/crescimento & desenvolvimento , Estados Unidos , Madeira/crescimento & desenvolvimento
15.
Ann Bot ; 107(8): 1279-86, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21486928

RESUMO

BACKGROUND AND AIMS: The maternal gametophytic calyptra is critical for moss sporophyte development and ultimately sporogenesis. The calyptra has been predicted to protect the sporophyte apex, including the undifferentiated sporogenous region and seta meristem, from desiccation. We investigate the hypothesis that this waterproofing ability is due to a waxy cuticle. The idea that moss calyptrae are covered by a cuticle has been present in the literature for over a century, but, until now, neither the presence nor the absence of a cuticle has been documented for any calyptra. METHODS: The epidermis of the calyptra, leafy gametophyte and sporophyte sporangia of the moss Funaria hygrometrica were examined using scanning and transmission electron microscopy. Thicknesses of individual cuticle layers were quantified and compared statistically. The immunochemistry antibody (LM19) specific for pectins was used to locate cell wall material within the cuticle. KEY RESULTS: A multi-layered cuticle is present on the calyptra of F. hygrometrica, including layers analogous to the cuticular layer, cell wall projections, electron-lucent and electron-dense cuticle proper observed in vascular plants. The calyptra rostrum has a cuticle that is significantly thicker than the other tissues examined and differs by specialized thickenings of the cuticular layer (cuticular pegs) at the regions of the anticlinal cell walls. This is the first documentation of cuticular pegs in a moss. CONCLUSIONS: The calyptra and its associated cuticle represent a unique form of maternal care in embryophytes. This organ has the potential to play a critical role in preventing desiccation of immature sporophytes and thereby may have been essential for the evolution of the moss sporophyte.


Assuntos
Bryopsida/ultraestrutura , Parede Celular/ultraestrutura , Esporângios/ultraestrutura , Bryopsida/crescimento & desenvolvimento , Parede Celular/química , Dessecação , Células Germinativas Vegetais/crescimento & desenvolvimento , Células Germinativas Vegetais/ultraestrutura , Imunoquímica , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Pectinas/análise , Epiderme Vegetal/química , Epiderme Vegetal/ultraestrutura , Reprodução , Esporângios/crescimento & desenvolvimento , Ceras/metabolismo
16.
Funct Plant Biol ; 38(7): 535-552, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32480907

RESUMO

Angiosperm leaves manifest a remarkable diversity of shapes that range from developmental sequences within a shoot and within crown response to microenvironment to variation among species within and between communities and among orders or families. It is generally assumed that because photosynthetic leaves are critical to plant growth and survival, variation in their shape reflects natural selection operating on function. Several non-mutually exclusive theories have been proposed to explain leaf shape diversity. These include: thermoregulation of leaves especially in arid and hot environments, hydraulic constraints, patterns of leaf expansion in deciduous species, biomechanical constraints, adaptations to avoid herbivory, adaptations to optimise light interception and even that leaf shape variation is a response to selection on flower form. However, the relative importance, or likelihood, of each of these factors is unclear. Here we review the evolutionary context of leaf shape diversification, discuss the proximal mechanisms that generate the diversity in extant systems, and consider the evidence for each the above hypotheses in the context of the functional significance of leaf shape. The synthesis of these broad ranging areas helps to identify points of conceptual convergence for ongoing discussion and integrated directions for future research.

17.
Evolution ; 63(2): 479-97, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19154370

RESUMO

Leaf shapes reflect complex assemblages of shape-determining elements, yet evolutionary studies tend to treat leaf shape as a single attribute, for example cordate or linear. As with all complex structures, individual elements of a leaf could theoretically evolve independently and at different rates to the extent permitted by genetic and functional limitations. We examined relative evolutionary lability of shape-determining elements in the highly diverse South African plant genus Pelargonium (Geraniaceae). We used SIMMAP to calculate Bayesian posterior probabilities for ancestral states of leaf-shape characters for major nodes across multiple phylogenetic trees. Trees were derived from a Bayesian analysis of DNA sequence data from four partitions. We found that shape elements differed in rates of character-state transformations across the tree. Leaf base, apex, and overall outline had low rates. Transformations in venation occurred at slightly higher rates and were associated with shifts in venation among major clades. Leaf margin type and overall leaf size showed intermediate rates, whereas high rates were observed in the extent of lamina lobing and functional leaf size. The results indicate that suites of elements characteristic of the recently evolved xerophytic lineage, for example pinnate venation, dissected lamina, and entire margins, were acquired piecemeal over nested levels of the phylogeny.


Assuntos
Evolução Biológica , Pelargonium/anatomia & histologia , Folhas de Planta/anatomia & histologia , Teorema de Bayes , Pelargonium/genética , Filogenia
18.
Am J Bot ; 96(8): 1388-98, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21628286

RESUMO

Wood density plays a key role in ecological strategies and life history variation in woody plants, but little is known about its anatomical basis in shrubs. We quantified the relationships between wood density, anatomy, and climate in 61 shrub species from eight field sites along latitudinal belts between 31° and 35° in North and South America. Measurements included cell dimensions, transverse areas of each xylem cell type and percentage contact between different cell types and vessels. Wood density was more significantly correlated with precipitation and aridity than with temperature. High wood density was achieved through reductions in cell size and increases in the proportion of wall relative to lumen. Wood density was independent of vessel traits, suggesting that this trait does not impose conduction limitations in shrubs. The proportion of fibers in direct contact with vessels decreased with and was independent of wood density, indicating that the number of fiber-vessel contacts does not explain the previously observed correlation between wood density and implosion resistance. Axial and radial parenchyma each had a significant but opposite association with wood density. Fiber size and wall thickness link wood density, life history, and ecological strategies by controlling the proportion of carbon invested per unit stem volume.

19.
Proc Natl Acad Sci U S A ; 105(32): 11248-53, 2008 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-18678893

RESUMO

Both engineered hydraulic systems and plant hydraulic systems are protected against failure by resistance, reparability, and redundancy. A basic rule of reliability engineering is that the level of independent redundancy should increase with increasing risk of fatal system failure. Here we show that hydraulic systems of plants function as predicted by this engineering rule. Hydraulic systems of shrubs sampled along two transcontinental aridity gradients changed with increasing aridity from highly integrated to independently redundant modular designs. Shrubs in humid environments tend to be hydraulically integrated, with single, round basal stems, whereas dryland shrubs typically have modular hydraulic systems and multiple, segmented basal stems. Modularity is achieved anatomically at the vessel-network scale or developmentally at the whole-plant scale through asymmetric secondary growth, which results in a semiclonal or clonal shrub growth form that appears to be ubiquitous in global deserts.


Assuntos
Ecossistema , Desenvolvimento Vegetal , Fenômenos Fisiológicos Vegetais , Fenômenos Biomecânicos/métodos , Clima Desértico
20.
New Phytol ; 176(1): 136-149, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17803645

RESUMO

Here, patterns of phenotypic plasticity and trait integration of leaf characteristics in six geographically discrete populations of the perennial herb Pelargonium australe were compared. It was hypothesized that populations would show local adaptation in trait means, but similar patterns of plasticity and trait integration. Further, it was questioned whether phenotypic plasticity was positively correlated with environmental heterogeneity and whether plasticity for water-use traits in particular was adaptive. Seedlings were grown in a glasshouse at six combinations of water and nutrient availability. Leaf anatomical, morphological and gas exchange traits were measured. High amounts of plasticity in leaf traits were found in response to changes in growth conditions and there was evidence of local adaptation among the populations. While there were significant correlations between plasticity and environmental heterogeneity, not all were positive. Notably, patterns of plasticity and trait integration varied significantly among populations. Despite that variation, some of the observed plasticity was adaptive: fitness was correlated with conservative water use when water was limiting. Pelargonium arrived in Australia approximately 5 million yr ago. It is concluded here that high amounts of plasticity, in some cases adaptive, and weak integration among traits may be key to the spread and success of this species.


Assuntos
Pelargonium/metabolismo , Água/metabolismo , Geografia , Pelargonium/anatomia & histologia , Pelargonium/crescimento & desenvolvimento , Fenótipo , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...