Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 10(6): 1039-1051, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38816498

RESUMO

Cotton (Gossypium hirsutum L.) is the key renewable fibre crop worldwide, yet its yield and fibre quality show high variability due to genotype-specific traits and complex interactions among cultivars, management practices and environmental factors. Modern breeding practices may limit future yield gains due to a narrow founding gene pool. Precision breeding and biotechnological approaches offer potential solutions, contingent on accurate cultivar-specific data. Here we address this need by generating high-quality reference genomes for three modern cotton cultivars ('UGA230', 'UA48' and 'CSX8308') and updating the 'TM-1' cotton genetic standard reference. Despite hypothesized genetic uniformity, considerable sequence and structural variation was observed among the four genomes, which overlap with ancient and ongoing genomic introgressions from 'Pima' cotton, gene regulatory mechanisms and phenotypic trait divergence. Differentially expressed genes across fibre development correlate with fibre production, potentially contributing to the distinctive fibre quality traits observed in modern cotton cultivars. These genomes and comparative analyses provide a valuable foundation for future genetic endeavours to enhance global cotton yield and sustainability.


Assuntos
Genoma de Planta , Gossypium , Melhoramento Vegetal , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Melhoramento Vegetal/métodos , Fibra de Algodão , Variação Genética , Fenótipo
2.
Theor Appl Genet ; 136(11): 230, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875695

RESUMO

KEY MESSAGE: Genetic diversity and population structure analyses showed progressively narrowed diversity in US Upland cotton compared to land races. GWAS identified genomic regions and candidate genes for photoperiod sensitivity in cotton. Six hundred fifty-seven accessions that included elite cotton germplasm (DIV panel), lines of a public cotton breeding program (FB panel), and tropical landrace accessions (TLA panel) of Gossypium hirsutum L. were genotyped with cottonSNP63K array and phenotyped for photoperiod sensitivity under long day-length conditions. The genetic diversity analysis using 26,952 polymorphic SNPs indicated a progressively narrowed diversity from the landraces (0.230) to the DIV panel accessions (0.195) and FB panel (0.116). Structure analysis in the US germplasm identified seven subpopulations representing all four major regions of the US cotton belt. Three subpopulations were identified within the landrace accessions. The highest fixation index (FST) of 0.65 was found between landrace accessions of Guatemala and the Plains-type cultivars from Southwest cotton region while the lowest FST values were between the germplasms of Mid-South and Southeastern regions. Genome wide association studies (GWAS) of photoperiod response using 600 phenotyped accessions identified 14 marker trait associations spread across eight Upland cotton chromosomes. Six of these marker trait associations, on four chromosomes (A10, D04, D05, and D06), showed significant epistatic interactions. Targeted genomic analysis identified regions with 19 candidate genes including Transcription factor Vascular Plant One-Zinc Finger 1 (VOZ1) and Protein Photoperiod-Independent Early Flowering 1 (PIE1) genes. Genetic diversity and genome wide analyses of photoperiod sensitivity in diverse cotton germplasms will enable the use of genomic tools to systematically utilize the tropical germplasm and its beneficial alleles for broadening the genetic base in Upland cotton.


Assuntos
Estudo de Associação Genômica Ampla , Gossypium , Gossypium/genética , Fotoperíodo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Fibra de Algodão
3.
Mol Genet Genomics ; 298(1): 143-152, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36346467

RESUMO

Introgression of superior fiber traits from Pima cotton (Gossypium barbadense, GB) into high yield Upland cotton (G. hirsutum) has been a breeding objective for many years in a few breeding programs in the world. However, progress has been very slow due to introgression barriers resulting from whole genome hybridization between the two species. To minimize such barriers, chromosome substitution lines (CS-B) from Pima cotton 3-79 in an Upland cotton cultivar TM-1 were developed. A multiparent advanced generation inter-cross (MAGIC) population consisting of 180 recombinant inbred lines (RILs) was subsequently made using the 18 CS-B lines and three Upland cotton cultivars as parents. In this research, we sequenced the whole genomes of the 21 parents and 180 RILs to examine the G. barbadense introgression. Of the 18 CS-B lines, 11 contained the target GB chromosome or chromosome segment, two contained more than two GB chromosomes, and five did not have the expected introgression. Residual introgression in non-target chromosomes was prevalent in all CS-B lines. A clear structure existed in the MAGIC population and the 180 RILs were distributed into three groups, i.e., high, moderate, and low GB introgression. Large blocks of GB chromosome introgression were still present in some RILs after five cycles of random-mating, an indication of recombination suppression or other unknown reasons present in the population. Identity by descent analysis revealed that the MAGIC RILs contained less introgression than expected. This research presents an insight on understanding the complex problems of introgression between cotton species.


Assuntos
Fibra de Algodão , Gossypium , Gossypium/genética , Iodeto de Potássio , Cruzamentos Genéticos , Melhoramento Vegetal , Genômica
4.
Front Plant Sci ; 13: 837038, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35557715

RESUMO

Observable qualitative traits are relatively stable across environments and are commonly used to evaluate crop genetic diversity. Recently, molecular markers have largely superseded describing phenotypes in diversity surveys. However, qualitative descriptors are useful in cataloging germplasm collections and for describing new germplasm in patents, publications, and/or the Plant Variety Protection (PVP) system. This research focused on the comparative analysis of standardized cotton traits as represented within the National Cotton Germplasm Collection (NCGC). The cotton traits are named by 'descriptors' that have non-numerical sub-categories (descriptor states) reflecting the details of how each trait manifests or is absent in the plant. We statistically assessed selected accessions from three major groups of Gossypium as defined by the NCGC curator: (1) "Stoneville accessions (SA)," containing mainly Upland cotton (Gossypium hirsutum) cultivars; (2) "Texas accessions (TEX)," containing mainly G. hirsutum landraces; and (3) Gossypium barbadense (Gb), containing cultivars or landraces of Pima cotton (Gossypium barbadense). For 33 cotton descriptors we: (a) revealed distributions of character states for each descriptor within each group; (b) analyzed bivariate associations between paired descriptors; and (c) clustered accessions based on their descriptors. The fewest significant associations between descriptors occurred in the SA dataset, likely reflecting extensive breeding for cultivar development. In contrast, the TEX and Gb datasets showed a higher number of significant associations between descriptors, likely correlating with less impact from breeding efforts. Three significant bivariate associations were identified for all three groups, bract nectaries:boll nectaries, leaf hair:stem hair, and lint color:seed fuzz color. Unsupervised clustering analysis recapitulated the species labels for about 97% of the accessions. Unexpected clustering results indicated accessions that may benefit from potential further investigation. In the future, the significant associations between standardized descriptors can be used by curators to determine whether new exotic/unusual accessions most closely resemble Upland or Pima cotton. In addition, the study shows how existing descriptors for large germplasm datasets can be useful to inform downstream goals in breeding and research, such as identifying rare individuals with specific trait combinations and targeting breakdown of remaining trait associations through breeding, thus demonstrating the utility of the analytical methods employed in categorizing germplasm diversity within the collection.

5.
Front Plant Sci ; 13: 842741, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498694

RESUMO

Ethyl methanesulfonate (EMS) mutagenesis offers important advantages for improving crops, such as cotton, with limited diversity in elite gene pools. EMS-induced point mutations are less frequently associated with deleterious traits than alleles from wild or exotic germplasm. From 157 mutant lines that have significantly improved fiber properties, we focused on nine mutant lines here. A total of eight populations were developed by crossing mutant lines in different combinations into GA230 (GA2004230) background. Multiple lines in each population were significantly improved for the fiber trait that distinguished the donor parent(s), demonstrating that an elite breeding line (GA230) could be improved for fiber qualities using the mutant lines. Genotypes improved for multiple fiber traits of interest suggesting that allele pyramiding is possible. Compared to midparent values, individual progeny in the population conferred fiber quality improvements of as much as 31.7% (in population O) for micronaire (MIC), 16.1% (in population P) for length, 22.4% (in population K) for strength, 4.1% (in population Q) for uniformity, 45.8% (in population N) for elongation, and 13.9% (in population O) for lint percentage (lint%). While further testing for stability of the phenotype and estimation of yield potential is necessary, mutation breeding shows promise as an approach to reduce the problem of the genetic bottleneck of upland cotton. The populations developed here may also contribute to identifying candidate genes and causal mutations for fiber quality improvement.

6.
Plant Dis ; 106(3): 990-995, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34705484

RESUMO

Fusarium oxysporum f. sp. vasinfectum race 4 (FOV4) is a devastating fungus pathogen that causes Fusarium wilt in both domesticated cotton species, Gossypium hirsutum (Upland) and G. barbadense (Pima). Greenhouse and field-based pathogenicity assays can be a challenge because of nonuniform inoculum levels, the presence of endophytes, and varying environmental factors. Therefore, an in vitro coculture system was designed to support the growth of both domesticated cotton species and FOV4 via an inert polyphenolic foam substrate with a liquid medium. A Fusarium wilt-susceptible Pima cotton cultivar, G. barbadense 'GB1031'; a highly resistant Pima cotton cultivar, G. barbadense 'DP348RF'; and a susceptible Upland cotton cultivar, G. hirsutum 'TM-1', were evaluated for 30 days during coculture with FOV4 in this foam-based system. Thirty days after inoculation, disease symptoms were more severe in both susceptible cultivars, which displayed higher percentages of foliar damage, and greater plant mortality than observed in 'DP348RF', the resistant Pima cotton cultivar. This foam-based in vitro system may be useful for screening cotton germplasm for resistance to a variety of fungus pathogens and may facilitate the study of biotic interactions in domesticated cotton species under controlled environmental conditions.


Assuntos
Fusarium , Gossypium , Técnicas de Cocultura , Fusarium/fisiologia , Gossypium/microbiologia , Doenças das Plantas/microbiologia
7.
PLoS One ; 16(12): e0259562, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34898615

RESUMO

Thickness of cotton fiber, referred to as fiber maturity, is a key determinant of fiber quality, lint yield, and textile performance. The cotton immature fiber (im) mutant has been used to study fiber maturity since its fiber is thinner than the wild type near isogeneic line (NIL), Texas Marker-1 (TM-1). The im phenotype is caused by a single recessive mutation of a pentatricopeptide repeat (PPR) gene that reduces the activity of mitochondrial complex I and up-regulates stress responsive genes. However, the mechanisms altering the stress responses in im mutant are not well understood. Thus, we characterized growth and gas exchange in im and TM-1 under no stress and also investigated their stress responses by comparing gas exchange and transcriptomic profiles under high temperature. Phenotypic differences were detected between the NILs in non-fiber tissues although less pronounced than the variation in fibers. At near optimum temperature (28±3°C), im maintained the same photosynthetic performance as TM-1 by means of greater stomatal conductance. In contrast, under high temperature stress (>34°C), im leaves reduced photosynthesis by decreasing the stomatal conductance disproportionately more than TM-1. Transcriptomic analyses showed that the genes involved in heat stress responses were differentially expressed between the NIL leaves. These results indicate that the im mutant previously reported to have low activity of mitochondrial complex I displays increased thermosensitivity by impacting stomatal conductance. They also support a notion that mitochondrial complex I activity is required for maintenance of optimal photosynthetic performance and acclimation of plants to high temperature stress. These findings may be useful in the future efforts to understand how physiological mechanisms play a role in determining cotton fiber maturity and may influence stress responses in other crops.


Assuntos
Gossypium/genética , Proteínas de Plantas/genética , Fibra de Algodão/análise , Complexo I de Transporte de Elétrons/metabolismo , Regulação da Expressão Gênica de Plantas , Gossypium/metabolismo , Luz , Mutação , Fenótipo , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Temperatura
8.
BMC Genomics ; 22(1): 309, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33926376

RESUMO

BACKGROUND: Cotton fibers provide a powerful model for studying cell differentiation and elongation. Each cotton fiber is a singular and elongated cell derived from epidermal-layer cells of a cotton seed. Efforts to understand this dramatic developmental shift have been impeded by the difficulty of separation between fiber and epidermal cells. RESULTS: Here we employed laser-capture microdissection (LCM) to separate these cell types. RNA-seq analysis revealed transitional differences between fiber and epidermal-layer cells at 0 or 2 days post anthesis. Specifically, down-regulation of putative cell cycle genes was coupled with upregulation of ribosome biosynthesis and translation-related genes, which may suggest their respective roles in fiber cell initiation. Indeed, the amount of fibers in cultured ovules was increased by cell cycle progression inhibitor, Roscovitine, and decreased by ribosome biosynthesis inhibitor, Rbin-1. Moreover, subfunctionalization of homoeologs was pervasive in fiber and epidermal cells, with expression bias towards 10% more D than A homoeologs of cell cycle related genes and 40-50% more D than A homoeologs of ribosomal protein subunit genes. Key cell cycle regulators were predicted to be epialleles in allotetraploid cotton. MYB-transcription factor genes displayed expression divergence between fibers and ovules. Notably, many phytohormone-related genes were upregulated in ovules and down-regulated in fibers, suggesting spatial-temporal effects on fiber cell development. CONCLUSIONS: Fiber cell initiation is accompanied by cell cycle arrest coupled with active ribosome biosynthesis, spatial-temporal regulation of phytohormones and MYB transcription factors, and homoeolog expression bias of cell cycle and ribosome biosynthesis genes. These valuable genomic resources and molecular insights will help develop breeding and biotechnological tools to improve cotton fiber production.


Assuntos
Fibra de Algodão , Regulação da Expressão Gênica de Plantas , Ciclo Celular/genética , Perfilação da Expressão Gênica , Gossypium/genética , Gossypium/metabolismo , Proteínas de Plantas/genética , RNA-Seq
9.
Trends Biotechnol ; 39(3): 221-224, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32988631

RESUMO

Traditional breeding techniques are proven, but additional knowledge learned from genome sequencing provides vast new data that might help identify gene targets for improving cotton sustainability. CRISPR/Cas9 provides a powerful tool for precision cotton breeding. Here, we discuss the opportunities and challenges of genome sequencing and editing for cotton improvement.


Assuntos
Edição de Genes , Genoma de Planta , Gossypium , Sistemas CRISPR-Cas , Genoma de Planta/genética , Gossypium/genética , Melhoramento Vegetal , Plantas Geneticamente Modificadas/genética , Sequenciamento Completo do Genoma
10.
G3 (Bethesda) ; 10(7): 2377-2384, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32393539

RESUMO

Gene introgression from wild species has been shown to be a feasible approach for fiber quality improvement in Upland cotton. Previously, we developed an interspecific G. mustelinum × G. hirsutum advanced-backcross population and mapped over one hundred QTL for fiber quality traits. In the current study, a trait-based selective genotyping approach was utilized to prioritize a small subset of introgression lines with high phenotypic values for different fiber quality traits, to simultaneously validate multiple fiber quality QTL in a single experiment. A total of 75 QTL were detected by CIM and/or single-marker analysis, including 11 significant marker-trait associations (P < 0.001) and three putative associations (P < 0.005) also reported in earlier studies. The QTL that have been validated include three each for fiber length, micronaire, and elongation, and one each for fiber strength and uniformity. Collectively, about 10% of the QTL previously reported have been validated here, indicating that selective genotyping has the potential to validate multiple marker-trait associations for different traits, especially those with a moderate to large-effect detected simultaneously in one experimental population. The G. mustelinum alleles contributed to improved fiber quality for all validated loci. The results from this study will lay the foundation for further fine mapping, marker-assisted selection and map-based gene cloning.


Assuntos
Fibra de Algodão , Gossypium , Mapeamento Cromossômico , Genótipo , Gossypium/genética , Fenótipo , Locos de Características Quantitativas
11.
Nat Genet ; 52(5): 525-533, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32313247

RESUMO

Polyploidy is an evolutionary innovation for many animals and all flowering plants, but its impact on selection and domestication remains elusive. Here we analyze genome evolution and diversification for all five allopolyploid cotton species, including economically important Upland and Pima cottons. Although these polyploid genomes are conserved in gene content and synteny, they have diversified by subgenomic transposon exchanges that equilibrate genome size, evolutionary rate heterogeneities and positive selection between homoeologs within and among lineages. These differential evolutionary trajectories are accompanied by gene-family diversification and homoeolog expression divergence among polyploid lineages. Selection and domestication drive parallel gene expression similarities in fibers of two cultivated cottons, involving coexpression networks and N6-methyladenosine RNA modifications. Furthermore, polyploidy induces recombination suppression, which correlates with altered epigenetic landscapes and can be overcome by wild introgression. These genomic insights will empower efforts to manipulate genetic recombination and modify epigenetic landscapes and target genes for crop improvement.


Assuntos
Genoma de Planta/genética , Gossypium/genética , Fibra de Algodão , Domesticação , Epigenômica/métodos , Evolução Molecular , Regulação da Expressão Gênica de Plantas/genética , Genômica/métodos , Filogenia , Poliploidia
12.
Mol Genet Genomics ; 295(1): 67-79, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31473809

RESUMO

The use of genomic selection (GS) has stimulated a new way to utilize molecular markers in breeding for complex traits in the absence of phenotypic data. GS can potentially decrease breeding cycle by selecting the progeny in the early stages. The objective of this study was to experimentally evaluate the potential value of genomic selection in Upland cotton breeding. Six fiber quality traits were obtained in 3 years of replicated field trials in Starkville, MS. Genotyping-by-sequencing-based genotyping was performed using 550 recombinant inbred lines of the multi-parent advanced generation inter-cross population, and 6292 molecular markers were used for the GS analysis. Several methods were compared including genomic BLUP (GBLUP), ridge regression BLUP (rrBLUP), BayesB, Bayesian LASSO, and reproducing kernel hilbert spaces (RKHS). The average heritability (h2) ranged from 0.38 to 0.88 for all tested traits across the 3 years evaluated. BayesB predicted the highest accuracies among the five GS methods tested. The prediction ability (PA) and prediction accuracy (PACC) varied widely across 3 years for all tested traits and the highest PA and PACC were 0.65, and 0.69, respectively, in 2010 for fiber elongation. Marker density and training population size appeared to be very important factors for PA and PACC in GS. Results indicated that BayesB-based GS method could predict genomic estimated breeding value efficiently in Upland cotton fiber quality attributes and has great potential utility in breeding by reducing cost and time.


Assuntos
Genoma de Planta/genética , Gossypium/genética , Locos de Características Quantitativas/genética , Seleção Genética/genética , Teorema de Bayes , Cruzamento/métodos , Fibra de Algodão , Marcadores Genéticos/genética , Genômica/métodos , Modelos Genéticos , Fenótipo
13.
BMC Genomics ; 20(1): 889, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31771502

RESUMO

BACKGROUND: Improving fiber quality and yield are the primary research objectives in cotton breeding for enhancing the economic viability and sustainability of Upland cotton production. Identifying the quantitative trait loci (QTL) for fiber quality and yield traits using the high-density SNP-based genetic maps allows for bridging genomics with cotton breeding through marker assisted and genomic selection. In this study, a recombinant inbred line (RIL) population, derived from cross between two parental accessions, which represent broad allele diversity in Upland cotton, was used to construct high-density SNP-based linkage maps and to map the QTLs controlling important cotton traits. RESULTS: Molecular genetic mapping using RIL population produced a genetic map of 3129 SNPs, mapped at a density of 1.41 cM. Genetic maps of the individual chromosomes showed good collinearity with the sequence based physical map. A total of 106 QTLs were identified which included 59 QTLs for six fiber quality traits, 38 QTLs for four yield traits and 9 QTLs for two morphological traits. Sub-genome wide, 57 QTLs were mapped in A sub-genome and 49 were mapped in D sub-genome. More than 75% of the QTLs with favorable alleles were contributed by the parental accession NC05AZ06. Forty-six mapped QTLs each explained more than 10% of the phenotypic variation. Further, we identified 21 QTL clusters where 12 QTL clusters were mapped in the A sub-genome and 9 were mapped in the D sub-genome. Candidate gene analyses of the 11 stable QTL harboring genomic regions identified 19 putative genes which had functional role in cotton fiber development. CONCLUSION: We constructed a high-density genetic map of SNPs in Upland cotton. Collinearity between genetic and physical maps indicated no major structural changes in the genetic mapping populations. Most traits showed high broad-sense heritability. One hundred and six QTLs were identified for the fiber quality, yield and morphological traits. Majority of the QTLs with favorable alleles were contributed by improved parental accession. More than 70% of the mapped QTLs shared the similar map position with previously reported QTLs which suggest the genetic relatedness of Upland cotton germplasm. Identification of QTL clusters could explain the correlation among some fiber quality traits in cotton. Stable and major QTLs and QTL clusters of traits identified in the current study could be the targets for map-based cloning and marker assisted selection (MAS) in cotton breeding. The genomic region on D12 containing the major stable QTLs for micronaire, fiber strength and lint percentage could be potential targets for MAS and gene cloning of fiber quality traits in cotton.


Assuntos
Alelos , Mapeamento Cromossômico , Fibra de Algodão/normas , Ligação Genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Característica Quantitativa Herdável , Estudos de Associação Genética , Fenótipo
14.
Theor Appl Genet ; 132(4): 989-999, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30506522

RESUMO

KEY MESSAGE: Significant associations between candidate genes and six major cotton fiber quality traits were identified in a MAGIC population using GWAS and whole genome sequencing. Upland cotton (Gossypium hirsutum L.) is the world's major renewable source of fibers for textiles. To identify causative genetic variants that influence the major agronomic measures of cotton fiber quality, which are used to set discount or premium prices on each bale of cotton in the USA, we measured six fiber phenotypes from twelve environments, across three locations and 7 years. Our 550 recombinant inbred lines were derived from a multi-parent advanced generation intercross population and were whole-genome-sequenced at 3× coverage, along with the eleven parental cultivars at 20× coverage. The segregation of 473,517 single nucleotide polymorphisms (SNPs) in this population, including 7506 non-synonymous mutations, was combined with phenotypic data to identify seven highly significant fiber quality loci. At these loci, we found fourteen genes with non-synonymous SNPs. Among these loci, some had simple additive effects, while others were only important in a subset of the population. We observed additive effects for elongation and micronaire, when the three most significant loci for each trait were examined. In an informative subset where the major multi-trait locus on chromosome A07:72-Mb was fixed, we unmasked the identity of another significant fiber strength locus in gene Gh_D13G1792 on chromosome D13. The micronaire phenotype only revealed one highly significant genetic locus at one environmental location, demonstrating a significant genetic by environment component. These loci and candidate causative variant alleles will be useful to cotton breeders for marker-assisted selection with minimal linkage drag and potential biotechnological applications.


Assuntos
Fibra de Algodão/normas , Cruzamentos Genéticos , Loci Gênicos , Estudo de Associação Genômica Ampla , Genômica/métodos , Gossypium/genética , Sequenciamento Completo do Genoma , Cromossomos de Plantas/genética , Gossypium/anatomia & histologia , Endogamia , Anotação de Sequência Molecular , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
15.
Sci Rep ; 7(1): 15274, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-29127298

RESUMO

Like those of many agricultural crops, the cultivated cotton is an allotetraploid and has a large genome (~2.5 gigabase pairs). The two sub genomes, A and D, are highly similar but unequally sized and repeat-rich, which pose significant challenges for accurate genome reconstruction using standard approaches. Here we report the development of BAC libraries, sub genome specific physical maps, and a new-generation sequencing approach that will lead to a reference-grade genome assembly for Upland cotton. Three BAC libraries were constructed, fingerprinted, and integrated with BAC-end sequences (BES) to produce a de novo whole-genome physical map. The BAC map was partitioned by sub genomes through alignment to the diploid progenitor D-genome reference sequence with densely spaced BES anchor points and computational filtering. The physical maps were validated with FISH and genetic mapping of SNP markers derived from BES. Two pairs of homeologous chromosomes, A11/D11 and A12/D12, were used to assess multiplex sequencing approaches for completeness and scalability. The results represent the first sub genome anchored physical maps of Upland cotton, and a new-generation approach to the whole-genome sequencing, which will lead to the reference-grade assembly of allopolyploid cotton and serve as a general strategy for sequencing other polyploid species.


Assuntos
Cromossomos de Plantas/genética , Ligação Genética , Genoma de Planta , Gossypium/genética , Poliploidia , Cromossomos Artificiais Bacterianos , Mapeamento de Sequências Contíguas , Biblioteca Gênica , Análise de Sequência de DNA
16.
BMC Plant Biol ; 17(1): 37, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28158969

RESUMO

BACKGROUND: Cotton germplasm resources contain beneficial alleles that can be exploited to develop germplasm adapted to emerging environmental and climate conditions. Accessions and lines have traditionally been characterized based on phenotypes, but phenotypic profiles are limited by the cost, time, and space required to make visual observations and measurements. With advances in molecular genetic methods, genotypic profiles are increasingly able to identify differences among accessions due to the larger number of genetic markers that can be measured. A combination of both methods would greatly enhance our ability to characterize germplasm resources. Recent efforts have culminated in the identification of sufficient SNP markers to establish high-throughput genotyping systems, such as the CottonSNP63K array, which enables a researcher to efficiently analyze large numbers of SNP markers and obtain highly repeatable results. In the current investigation, we have utilized the SNP array for analyzing genetic diversity primarily among cotton cultivars, making comparisons to SSR-based phylogenetic analyses, and identifying loci associated with seed nutritional traits. RESULTS: The SNP markers distinctly separated G. hirsutum from other Gossypium species and distinguished the wild from cultivated types of G. hirsutum. The markers also efficiently discerned differences among cultivars, which was the primary goal when designing the CottonSNP63K array. Population structure within the genus compared favorably with previous results obtained using SSR markers, and an association study identified loci linked to factors that affect cottonseed protein content. CONCLUSIONS: Our results provide a large genome-wide variation data set for primarily cultivated cotton. Thousands of SNPs in representative cotton genotypes provide an opportunity to finely discriminate among cultivated cotton from around the world. The SNPs will be relevant as dense markers of genome variation for association mapping approaches aimed at correlating molecular polymorphisms with variation in phenotypic traits, as well as for molecular breeding approaches in cotton.


Assuntos
Gossypium/genética , Polimorfismo de Nucleotídeo Único , Alelos , Marcadores Genéticos , Variação Genética , Genoma de Planta , Genótipo , Gossypium/classificação , Repetições de Microssatélites , Filogenia , Proteínas de Plantas/genética
17.
Proc Natl Acad Sci U S A ; 114(1): E57-E66, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27999177

RESUMO

Leaf shape varies spectacularly among plants. Leaves are the primary source of photoassimilate in crop plants, and understanding the genetic basis of variation in leaf morphology is critical to improving agricultural productivity. Leaf shape played a unique role in cotton improvement, as breeders have selected for entire and lobed leaf morphs resulting from a single locus, okra (l-D1), which is responsible for the major leaf shapes in cotton. The l-D1 locus is not only of agricultural importance in cotton, but through pioneering chimeric and morphometric studies, it has contributed to fundamental knowledge about leaf development. Here we show that an HD-Zip transcription factor homologous to the LATE MERISTEM IDENTITY1 (LMI1) gene of Arabidopsis is the causal gene underlying the l-D1 locus. The classical okra leaf shape allele has a 133-bp tandem duplication in the promoter, correlated with elevated expression, whereas an 8-bp deletion in the third exon of the presumed wild-type normal allele causes a frame-shifted and truncated coding sequence. Our results indicate that subokra is the ancestral leaf shape of tetraploid cotton that gave rise to the okra allele and that normal is a derived mutant allele that came to predominate and define the leaf shape of cultivated cotton. Virus-induced gene silencing (VIGS) of the LMI1-like gene in an okra variety was sufficient to induce normal leaf formation. The developmental changes in leaves conferred by this gene are associated with a photosynthetic transcriptomic signature, substantiating its use by breeders to produce a superior cotton ideotype.


Assuntos
Gossypium/genética , Gossypium/fisiologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Fatores de Transcrição/genética , Sequência de Aminoácidos/genética , Mutação da Fase de Leitura/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Regiões Promotoras Genéticas/genética
18.
BMC Genomics ; 17(1): 903, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27829353

RESUMO

BACKGROUND: Cotton supplies a great majority of natural fiber for the global textile industry. The negative correlation between yield and fiber quality has hindered breeders' ability to improve these traits simultaneously. A multi-parent advanced generation inter-cross (MAGIC) population developed through random-mating of multiple diverse parents has the ability to break this negative correlation. Genotyping-by-sequencing (GBS) is a method that can rapidly identify and genotype a large number of single nucleotide polymorphisms (SNP). Genotyping a MAGIC population using GBS technologies will enable us to identify marker-trait associations with high resolution. RESULTS: An Upland cotton MAGIC population was developed through random-mating of 11 diverse cultivars for five generations. In this study, fiber quality data obtained from four environments and 6071 SNP markers generated via GBS and 223 microsatellite markers of 547 recombinant inbred lines (RILs) of the MAGIC population were used to conduct a genome wide association study (GWAS). By employing a mixed linear model, GWAS enabled us to identify markers significantly associated with fiber quantitative trait loci (QTL). We identified and validated one QTL cluster associated with four fiber quality traits [short fiber content (SFC), strength (STR), length (UHM) and uniformity (UI)] on chromosome A07. We further identified candidate genes related to fiber quality attributes in this region. Gene expression and amino acid substitution analysis suggested that a regeneration of bulb biogenesis 1 (GhRBB1_A07) gene is a candidate for superior fiber quality in Upland cotton. The DNA marker CFBid0004 designed from an 18 bp deletion in the coding sequence of GhRBB1_A07 in Acala Ultima is associated with the improved fiber quality in the MAGIC RILs and 105 additional commercial Upland cotton cultivars. CONCLUSION: Using GBS and a MAGIC population enabled more precise fiber QTL mapping in Upland cotton. The fiber QTL and associated markers identified in this study can be used to improve fiber quality through marker assisted selection or genomic selection in a cotton breeding program. Target manipulation of the GhRBB1_A07 gene through biotechnology or gene editing may potentially improve cotton fiber quality.


Assuntos
Fibra de Algodão , Genes de Plantas , Estudos de Associação Genética , Genética Populacional , Genoma de Planta , Estudo de Associação Genômica Ampla , Gossypium/genética , Cruzamento , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável
19.
Sci Rep ; 6: 22980, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27009386

RESUMO

The R2R3-MYB is one of the largest families of transcription factors, which have been implicated in multiple biological processes. There is great diversity in the number of R2R3-MYB genes in different plants. However, there is no report on genome-wide characterization of this gene family in cotton. In the present study, a total of 205 putative R2R3-MYB genes were identified in cotton D genome (Gossypium raimondii), that are much larger than that found in other cash crops with fully sequenced genomes. These GrMYBs were classified into 13 groups with the R2R3-MYB genes from Arabidopsis and rice. The amino acid motifs and phylogenetic tree were predicted and analyzed. The sequences of GrMYBs were distributed across 13 chromosomes at various densities. The results showed that the expansion of the G. Raimondii R2R3-MYB family was mainly attributable to whole genome duplication and segmental duplication. Moreover, the expression pattern of 52 selected GrMYBs and 46 GaMYBs were tested in roots and leaves under different abiotic stress conditions. The results revealed that the MYB genes in cotton were differentially expressed under salt and drought stress treatment. Our results will be useful for determining the precise role of the MYB genes during stress responses with crop improvement.


Assuntos
Expressão Gênica , Genes myb , Gossypium/crescimento & desenvolvimento , Gossypium/genética , Proteínas de Plantas/genética , Secas , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica , Filogenia , Salinidade , Duplicações Segmentares Genômicas , Análise de Sequência de Proteína , Estresse Fisiológico
20.
Sci Rep ; 6: 21535, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26857372

RESUMO

TCP proteins are plant-specific transcription factors implicated to perform a variety of physiological functions during plant growth and development. In the current study, we performed for the first time the comprehensive analysis of TCP gene family in a diploid cotton species, Gossypium arboreum, including phylogenetic analysis, chromosome location, gene duplication status, gene structure and conserved motif analysis, as well as expression profiles in fiber at different developmental stages. Our results showed that G. arboreum contains 36 TCP genes, distributing across all of the thirteen chromosomes. GaTCPs within the same subclade of the phylogenetic tree shared similar exon/intron organization and motif composition. In addition, both segmental duplication and whole-genome duplication contributed significantly to the expansion of GaTCPs. Many these TCP transcription factor genes are specifically expressed in cotton fiber during different developmental stages, including cotton fiber initiation and early development. This suggests that TCP genes may play important roles in cotton fiber development.


Assuntos
Cromossomos de Plantas , Regulação da Expressão Gênica de Plantas/fisiologia , Gossypium , Filogenia , Proteínas de Plantas , Fatores de Transcrição , Motivos de Aminoácidos , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Gossypium/genética , Gossypium/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...