Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(9): 107462, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37636074

RESUMO

One Biosecurity is an interdisciplinary approach to policy and research that builds on the interconnections between human, animal, plant, and ecosystem health to effectively prevent and mitigate the impacts of invasive alien species. To support this approach requires that key cross-sectoral research innovations be identified and prioritized. Following an interdisciplinary horizon scan for emerging research that underpins One Biosecurity, four major interlinked advances were identified: implementation of new surveillance technologies adopting state-of-the-art sensors connected to the Internet of Things, deployable handheld molecular and genomic tracing tools, the incorporation of wellbeing and diverse human values into biosecurity decision-making, and sophisticated socio-environmental models and data capture. The relevance and applicability of these innovations to address threats from pathogens, pests, and weeds in both terrestrial and aquatic ecosystems emphasize the opportunity to build critical mass around interdisciplinary teams at a global scale that can rapidly advance science solutions targeting biosecurity threats.

2.
Environ Microbiol ; 25(3): 766-771, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36562630

RESUMO

Flowers are an important niche for microbes, and microbes in turn influence plant fitness. As flower morphology and biology change rapidly over time, dynamic niches for microbes are formed and lost. Floral physiology at each life stage can therefore influence arrival, persistence and loss of microbial species; however, this remains little understood despite its potential consequences for host reproductive success. Through internal transcribed spacer 1 (ITS1) community profiling, we characterized the effect of transitioning through five floral stages of manuka (Leptospermum scoparium), from immature bud to spent flower, and subsequent allocation to seed, on the flower-inhabiting fungal community. We found nectar-consuming yeasts from Aureobasidium and Vishniacozyma genera and functionally diverse filamentous fungi from the Cladosporium genus dominated the anthosphere. The candidate core microbiota persisted across this dynamic niche despite high microbial turnover, as observed in shifts in community composition and diversity as flowers matured and senesced. The results demonstrated that floral stages are strong drivers of anthosphere fungal community assembly and dynamics. This study represents the first detailed exploration of fungi through floral development, building on fundamental knowledge in microbial ecology of healthy flowers.


Assuntos
Microbiota , Micobioma , Leptospermum , Flores/microbiologia , Néctar de Plantas , Polinização
3.
FEMS Microbiol Ecol ; 77(3): 600-10, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21658090

RESUMO

Low-molecular-weight organic compounds in root exudates play a key role in plant-microorganism interactions by influencing the structure and function of soil microbial communities. Model exudate solutions, based on organic acids (OAs) (quinic, lactic, maleic acids) and sugars (glucose, sucrose, fructose), previously identified in the rhizosphere of Pinus radiata, were applied to soil microcosms. Root exudate compound solutions stimulated soil dehydrogenase activity and the addition of OAs increased soil pH. The structure of active bacterial communities, based on reverse-transcribed 16S rRNA gene PCR, was assessed by denaturing gradient gel electrophoresis and PhyloChip microarrays. Bacterial taxon richness was greater in all treatments than that in control soil, with a wide range of taxa (88-1043) responding positively to exudate solutions and fewer (<24) responding negatively. OAs caused significantly greater increases than sugars in the detectable richness of the soil bacterial community and larger shifts of dominant taxa. The greater response of bacteria to OAs may be due to the higher amounts of added carbon, solubilization of soil organic matter or shifts in soil pH. Our results indicate that OAs play a significant role in shaping soil bacterial communities and this may therefore have a significant impact on plant growth.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Exsudatos de Plantas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , DNA Bacteriano/genética , Dados de Sequência Molecular , Compostos Orgânicos/análise , Compostos Orgânicos/metabolismo , Filogenia , Pinus/química , Pinus/metabolismo , Pinus/microbiologia , Exsudatos de Plantas/análise , Raízes de Plantas/química , RNA Ribossômico 16S/genética , Rizosfera , Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...