Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Sci ; 8(2): 591-606, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31859298

RESUMO

We report a water-soluble and non-toxic method to incorporate additional extracellular matrix proteins into gelatin hydrogels, while obviating the use of chemical crosslinkers such as glutaraldehyde. Gelatin hydrogels were fabricated using a range of gelatin concentrations (4%-10%) that corresponded to elastic moduli of approximately 1 kPa-25 kPa, respectively, a substrate stiffness relevant for multiple cell types. Microbial transglutaminase was then used to enzymatically crosslink a layer of laminin on top of gelatin hydrogels, resulting in 2-component gelatin-laminin hydrogels. Human induced pluripotent stem cell derived spinal spheroids readily adhered and rapidly extended axons on GEL-LN hydrogels. Axons displayed a more mature morphology and superior electrophysiological properties on GEL-LN hydrogels compared to the controls. Schwann cells on GEL-LN hydrogels adhered and proliferated normally, displayed a healthy morphology, and maintained the expression of Schwann cell specific markers. Lastly, skeletal muscle cells on GEL-LN hydrogels achieved long-term culture for up to 28 days without delamination, while expressing higher levels of terminal genes including myosin heavy chain, MyoD, MuSK, and M-cadherin suggesting enhanced maturation potential and myotube formation compared to the controls. Future studies will employ the superior culture outcomes of this hybrid substrate for engineering functional neuromuscular junctions and related organ on a chip applications.


Assuntos
Reagentes de Ligações Cruzadas/metabolismo , Gelatina/metabolismo , Hidrogéis/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Engenharia Tecidual , Transglutaminases/metabolismo , Células Cultivadas , Reagentes de Ligações Cruzadas/química , Gelatina/química , Humanos , Hidrogéis/química , Fibras Musculares Esqueléticas/química , Esferoides Celulares/química , Esferoides Celulares/metabolismo , Transglutaminases/química
2.
PLoS One ; 13(1): e0190350, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29324783

RESUMO

Honokiol (poly-phenolic lignan from Magnolia grandiflora) is a Sirtuin-3 (SIRT3) activator which exhibit antioxidant activity and augment mitochondrial functions in several experimental models. Modern evidence suggests the critical role of SIRT3 in the progression of several metabolic and neurodegenerative diseases. Amyloid beta (Aß), the precursor to extracellular senile plaques, accumulates in the brains of patients with Alzheimer's disease (AD) and is related to the development of cognitive impairment and neuronal cell death. Aß is generated from amyloid-ß precursor protein (APP) through sequential cleavages, first by ß-secretase and then by γ-secretase. Drugs modulating this pathway are believed to be one of the most promising strategies for AD treatment. In the present study, we found that Honokiol significantly enhanced SIRT3 expression, reduced reactive oxygen species generation and lipid peroxidation, enhanced antioxidant activities, and mitochondrial function thereby reducing Aß and sAPPß levels in Chinese Hamster Ovarian (CHO) cells (carrying the amyloid precursor protein-APP and Presenilin PS1 mutation). Mechanistic studies revealed that Honokiol affects neither protein levels of APP nor α-secretase activity. In contrast, Honokiol increased the expression of AMPK, CREB, and PGC-1α, thereby inhibiting ß-secretase activity leading to reduced Aß levels. These results suggest that Honokiol is an activator of SIRT3 capable of improving antioxidant activity, mitochondrial energy regulation, while decreasing Aß, thereby indicating it to be a lead compound for AD drug development.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Compostos de Bifenilo/farmacologia , Lignanas/farmacologia , Sirtuína 3/efeitos dos fármacos , Adenilato Quinase/metabolismo , Animais , Células CHO , Cricetulus , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...