Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 809, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033226

RESUMO

We describe the following shared data from N = 103 healthy adults who completed a broad set of cognitive tasks, surveys, and neuroimaging measurements to examine the construct of self-regulation. The neuroimaging acquisition involved task-based fMRI, resting state fMRI, and structural MRI. Each subject completed the following ten tasks in the scanner across two 90-minute scanning sessions: attention network test (ANT), cued task switching, Columbia card task, dot pattern expectancy (DPX), delay discounting, simple and motor selective stop signal, Stroop, a towers task, and a set of survey questions. The dataset is shared openly through the OpenNeuro project, and the dataset is formatted according to the Brain Imaging Data Structure (BIDS) standard.


Assuntos
Encéfalo , Cognição , Imageamento por Ressonância Magnética , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Adulto , Autocontrole , Masculino , Feminino
2.
J Neurosci ; 44(14)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38316565

RESUMO

Although we must prioritize the processing of task-relevant information to navigate life, our ability to do so fluctuates across time. Previous work has identified fMRI functional connectivity (FC) networks that predict an individual's ability to sustain attention and vary with attentional state from 1 min to the next. However, traditional dynamic FC approaches typically lack the temporal precision to capture moment-to-moment network fluctuations. Recently, researchers have "unfurled" traditional FC matrices in "edge cofluctuation time series" which measure timepoint-by-timepoint cofluctuations between regions. Here we apply event-based and parametric fMRI analyses to edge time series to capture moment-to-moment fluctuations in networks related to attention. In two independent fMRI datasets examining young adults of both sexes in which participants performed a sustained attention task, we identified a reliable set of edges that rapidly deflects in response to rare task events. Another set of edges varies with continuous fluctuations in attention and overlaps with a previously defined set of edges associated with individual differences in sustained attention. Demonstrating that edge-based analyses are not simply redundant with traditional regions-of-interest-based approaches, up to one-third of reliably deflected edges were not predicted from univariate activity patterns alone. These results reveal the large potential in combining traditional fMRI analyses with edge time series to identify rapid reconfigurations in networks across the brain.


Assuntos
Atenção , Encéfalo , Masculino , Feminino , Adulto Jovem , Humanos , Modelos Lineares , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Atenção/fisiologia , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos
3.
Nat Hum Behav ; 8(2): 349-360, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37996498

RESUMO

Response times (RTs) are often the main signal of interest in cognitive psychology but are often ignored in functional MRI (fMRI) analyses. In fMRI analysis the intensity of the signal serves as a proxy for the intensity of local neuronal activity, but changes in either the intensity or the duration of neuronal activity can yield identical fMRI signals. Therefore, if RTs are ignored and pair with neuronal durations, fMRI results claiming intensity differences may be confounded by RTs. We show how ignoring RTs goes beyond this confound, where longer RTs are paired with larger activation estimates, to lesser-known issues where RTs become confounds in group-level analyses and, surprisingly, how the RT confound can induce other artificial group-level associations with variables that are not related to the condition contrast or RTs. We propose a new time-series model to address these issues and encourage increasing focus on what the widespread RT-based signal represents.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Tempo de Reação , Imageamento por Ressonância Magnética/métodos , Fatores de Tempo
4.
bioRxiv ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37808748

RESUMO

We describe the following shared data from N=103 healthy adults who completed a broad set cognitive tasks, surveys, and neuroimaging measurements to examine the construct of self-regulation. The neuroimaging acquisition involved task-based fMRI, resting fMRI, and structural MRI. Each subject completed the following ten tasks in the scanner across two 90-minute scanning sessions: attention network test (ANT), cued task switching, Columbia card task, dot pattern expectancy (DPX), delay discounting, simple and motor selective stop signal, Stroop, a towers task, and a set of survey questions. Subjects also completed resting state scans. The dataset is shared openly through the OpenNeuro project, and the dataset is formatted according to the Brain Imaging Data Structure (BIDS) standard.

5.
bioRxiv ; 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37503244

RESUMO

Although we must prioritize the processing of task-relevant information to navigate life, our ability to do so fluctuates across time. Previous work has identified fMRI functional connectivity (FC) networks that predict an individual's ability to sustain attention and vary with attentional state from one minute to the next. However, traditional dynamic FC approaches typically lack the temporal precision to capture moment-by-moment network fluctuations. Recently, researchers have 'unfurled' traditional FC matrices in 'edge cofluctuation time series' which measure time point-by-time point cofluctuations between regions. Here we apply event-based and parametric fMRI analyses to edge time series to capture high-frequency fluctuations in networks related to attention. In two independent fMRI datasets in which participants performed a sustained attention task, we identified a reliable set of edges that rapidly deflects in response to rare task events. Another set of edges varies with continuous fluctuations in attention and overlaps with a previously defined set of edges associated with individual differences in sustained attention. Demonstrating that edge-based analyses are not simply redundant with traditional regions-of-interest based approaches, up to one-third of reliably deflected edges were not predicted from univariate activity patterns alone. These results reveal the large potential in combining traditional fMRI analyses with edge time series to identify rapid reconfigurations in networks across the brain.

6.
J Exp Psychol Hum Percept Perform ; 49(3): 277-289, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36548061

RESUMO

Response inhibition is key to controlled behavior and is commonly investigated with the stop-signal paradigm. The authors investigated how response inhibition is situated within a taxonomy of control processes by combining multiple forms of control within dual tasks. Response inhibition, as measured by stop-signal reaction time (SSRT), was impaired when combined with shape matching, but not the flanker task, and when combined with cued task switching, but not predictable task switching, suggesting that response inhibition may be weakly or variably impaired when combined with selective attention and set shifting demands, respectively. Response inhibition was also consistently impaired when combined with the N-back or directed forgetting tasks, putative measures of working memory. Impairments of response inhibition by other control demands appeared to be primarily driven by task context, as SSRT slowing was similar for trials where control demands were either high (e.g., task switch) or low (e.g., task stay). These results demonstrate that response inhibition processes are often impaired in the context of other control demands, even on trials where direct engagement of those other control processes is not required. This suggests a taxonomy of control in which response inhibition overlaps with related control processes, especially working memory. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Assuntos
Viés de Atenção , Inibição Psicológica , Processos Mentais , Tempo de Reação , Tempo de Reação/fisiologia , Humanos , Viés de Atenção/fisiologia , Processos Mentais/fisiologia
7.
Transl Psychiatry ; 12(1): 271, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35820995

RESUMO

Disruptions of self-regulation are a hallmark of numerous psychiatric disorders. Here, we examine the relationship between transdiagnostic dimensions of psychopathology and changes in self-regulation in the early phase of the COVID-19 pandemic. We used a data-driven approach on a large number of cognitive tasks and self-reported surveys in training datasets. Then, we derived measures of self-regulation and psychiatric functioning in an independent population sample (N = 102) tested both before and after the onset of the COVID-19 pandemic, when the restrictions in place represented a threat to mental health and forced people to flexibly adjust to modifications of daily routines. We found independent relationships between transdiagnostic dimensions of psychopathology and longitudinal alterations in specific domains of self-regulation defined using a diffusion decision model. Compared to the period preceding the onset of the pandemic, a symptom dimension related to anxiety and depression was characterized by a more cautious behavior, indexed by the need to accumulate more evidence before making a decision. Instead, social withdrawal related to faster non-decision processes. Self-reported measures of self-regulation predicted variance in psychiatric symptoms both concurrently and prospectively, revealing the psychological dimensions relevant for separate transdiagnostic dimensions of psychiatry, but tasks did not. Taken together, our results are suggestive of potential cognitive vulnerabilities in the domain of self-regulation in people with underlying psychiatric difficulties in face of real-life stressors. More generally, they also suggest that the study of cognition needs to take into account the dynamic nature of real-world events as well as within-subject variability over time.


Assuntos
COVID-19 , Transtornos Mentais , Autocontrole , Ansiedade/psicologia , Humanos , Transtornos Mentais/epidemiologia , Pandemias
8.
Elife ; 102021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33661097

RESUMO

The Adolescent Brain Cognitive Development (ABCD) study is an unprecedented longitudinal neuroimaging sample that tracks the brain development of over 9-10 year olds through adolescence. At the core of this study are the three tasks that are completed repeatedly within the MRI scanner, one of which is the stop-signal task. In analyzing the available stopping experimental code and data, we identified a set of design issues that we believe significantly compromise its value. These issues include but are not limited to variable stimulus durations that violate basic assumptions of dominant stopping models, trials in which stimuli are incorrectly not presented, and faulty stop-signal delays. We present eight issues, show their effect on the existing ABCD data, suggest prospective solutions including task changes for future data collection and preliminary computational models, and suggest retrospective solutions for data users who wish to make the most of the existing data.


Assuntos
Encéfalo/crescimento & desenvolvimento , Cognição , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Adolescente , Humanos , Estudos Prospectivos , Estudos Retrospectivos
9.
Elife ; 102021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33729156

RESUMO

Cognitive models in psychology and neuroscience widely assume that the human brain maintains an abstract representation of tasks. This assumption is fundamental to theories explaining how we learn quickly, think creatively, and act flexibly. However, neural evidence for a verifiably generative abstract task representation has been lacking. Here, we report an experimental paradigm that requires forming such a representation to act adaptively in novel conditions without feedback. Using functional magnetic resonance imaging, we observed that abstract task structure was represented within left mid-lateral prefrontal cortex, bilateral precuneus, and inferior parietal cortex. These results provide support for the neural instantiation of the long-supposed abstract task representation in a setting where we can verify its influence. Such a representation can afford massive expansions of behavioral flexibility without additional experience, a vital characteristic of human cognition.


Assuntos
Cognição , Generalização Psicológica , Aprendizagem , Córtex Pré-Frontal/fisiologia , Mapeamento Encefálico , Imageamento por Ressonância Magnética
10.
Sci Adv ; 7(12)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33731357

RESUMO

The stop-signal paradigm, a primary experimental paradigm for understanding cognitive control and response inhibition, rests upon the theoretical foundation of race models, which assume that a go process races independently against a stop process that occurs after a stop-signal delay (SSD). We show that severe violations of this independence assumption at short SSDs occur systematically across a wide range of conditions, including fast and slow reaction times, auditory and visual stop signals, manual and saccadic responses, and especially in selective stopping. We also reanalyze existing data and show that conclusions can change when short SSDs are excluded. Last, we suggest experimental and analysis techniques to address this violation, and propose adjustments to extant models to accommodate this finding.


Assuntos
Movimentos Sacádicos , Tempo de Reação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...