Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Biol Chem ; 291(19): 9991-10005, 2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-26841863

RESUMO

The G-protein-coupled chemokine receptor CXCR4 generates signals that lead to cell migration, cell proliferation, and other survival mechanisms that result in the metastatic spread of primary tumor cells to distal organs. Numerous studies have demonstrated that CXCR4 can form homodimers or can heterodimerize with other G-protein-coupled receptors to form receptor complexes that can amplify or decrease the signaling capacity of each individual receptor. Using biophysical and biochemical approaches, we found that CXCR4 can form an induced heterodimer with cannabinoid receptor 2 (CB2) in human breast and prostate cancer cells. Simultaneous, agonist-dependent activation of CXCR4 and CB2 resulted in reduced CXCR4-mediated expression of phosphorylated ERK1/2 and ultimately reduced cancer cell functions such as calcium mobilization and cellular chemotaxis. Given that treatment with cannabinoids has been shown to reduce invasiveness of cancer cells as well as CXCR4-mediated migration of immune cells, it is plausible that CXCR4 signaling can be silenced through a physical heterodimeric association with CB2, thereby inhibiting subsequent functions of CXCR4. Taken together, the data illustrate a mechanism by which the cannabinoid system can negatively modulate CXCR4 receptor function and perhaps tumor progression.


Assuntos
Neoplasias da Mama/patologia , Neoplasias da Próstata/patologia , Multimerização Proteica , Receptor CB2 de Canabinoide/química , Receptor CB2 de Canabinoide/metabolismo , Receptores CXCR4/química , Receptores CXCR4/metabolismo , Animais , Western Blotting , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Canabinoides/farmacologia , Movimento Celular/efeitos dos fármacos , Feminino , Humanos , Imunoprecipitação , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Células Tumorais Cultivadas
3.
Cancer Microenviron ; 2013 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-24078461

RESUMO

Reactive oxygen species (ROS) are implicated in many human diseases, including cancer. We have previously demonstrated that ROS increased the expression and activity of the chemokine receptor, CXCR4, which enhanced metastatic functions in prostate cancer cells. Studies have also revealed that CXCR4 and its ligand, SDF-1α, promoted ROS accumulation; however the source of ROS was not investigated. Recent evidence suggested that ROS accumulation in prostate cancer cell lines was contributed by the NADPH oxidase (NOX) family of enzymes. Herein, we sought to determine whether the CXCR4/SDF-1α signaling axis mediates ROS production through NOX in prostate cancer. We observed an increase in intracellular ROS generation in prostate cancer cells upon SDF-1α stimulation compared to untreated samples. Conversely, lower levels of ROS were detected in cells treated with AMD3100 (CXCR4 antagonist) or the ROS scavenger, N-acetyl-cysteine (NAC). Markedly reduced levels of ROS were observed in cells treated with apocynin (NOX inhibitor) compared to rotenone (mitochondrial complex I inhibitor)-treated cells. Specifically, we determined that NOX2 responded to, and was regulated by, the SDF-1α/CXCR4 signaling axis. Moreover, chemical inhibition of the ERK1/2 and PI3K pathways revealed that PI3K/AKT signaling participated in CXCR4-mediated NOX activity, and that these collective signaling events resulted in enhanced cell movement towards a chemoattractant. Finally, NOX2 may be a potential therapeutic target, as Oncomine microarray database analysis of normal prostate, benign prostatic hyperplasia (BPH) and prostatic intraepithelial neoplasia (PIN) tissue samples determined a correlation between NOX2 expression and prostate cancer. Taken together, these results suggest that CXCR4/SDF-1α-mediated ROS production through NOX2 enzymes may be an emerging concept by which chemokine signaling progresses tumorigenesis.

4.
Mol Cell Biochem ; 376(1-2): 63-71, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23315288

RESUMO

Reactive oxygen species (ROS) play a central role in oxidative stress, which leads to the onset of diseases, such as cancer. Furthermore, ROS contributes to the delicate balance between tumor cell survival and death. However, the mechanisms by which tumor cells decide to elicit survival or death signals during oxidative stress are not completely understood. We have previously reported that ROS enhanced tumorigenic functions in prostate cancer cells, such as transendothelial migration and invasion, which depended on CXCR4 and AKT signaling. Here, we report a novel mechanism by which ROS facilitated cell death through activation of AKT. We initially observed that ROS enhanced the expression of phosphorylated AKT (p-AKT) in 22Rv1 human prostate cancer cells. The tumor suppressor PTEN, a negative regulator of AKT signaling, was rendered catalytically inactive through oxidation by ROS, although the expression levels remained consistent. Despite these events, cells still underwent apoptosis. Further investigation into apoptosis revealed that expression of the tumor suppressor pVHL increased, and contains a target site for p-AKT phosphorylation. pVHL and p-AKT associated in vitro, and knockdown of pVHL rescued HIF1α expression and the cells from apoptosis. Collectively, our study suggests that in the context of oxidative stress, p-AKT facilitated apoptosis by inducing pVHL function.


Assuntos
Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo , Técnicas de Silenciamento de Genes , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Estresse Oxidativo , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação , Neoplasias da Próstata/tratamento farmacológico , Proteína Supressora de Tumor Von Hippel-Lindau/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...