Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 126(39): 7720-7730, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36166822

RESUMO

Developing the knowledge on surfactant interfacial phenomena is highly valuable for the advancement of technological, commercial, and industrial products, as these applications often rely on interfacial and colloidal chemistry. Zwitterionic surfactants are a less toxic alternative to standard charged surfactants. With both positively charged quaternary ammonium and negatively charged sulfonate constituents, zwitterionic DDAPS can have diverse interfacial interactions with various coadditives. In this work, we investigate DDAPS adsorption to a planar oil/water interface and its stabilization of oil-in-water nanoemulsions. By studying both interfacial geometries with surface-specific, nonlinear spectroscopy, we gain deeper insights and a molecular perspective into DDAPS's behavior in the presence of various salts and cosurfactants. From an application standpoint, zwitterionic surfactants are often mixed with other chemicals or used in an environment with pre-existing chemicals (e.g., ocean water during oil remediation). Thus, it is important to understand how such coadditives alter DDAPS's behavior and its performance as an emulsifier. Our results show that DDAPS is nearly uninfluenced by coadditives at a planar oil/water interface, but the identical coadditives are crucial for DDAPS to form and stabilize nanoemulsions. Additionally, the surfactant packing properties vary between interfaces as well as coadditives, indicating that certain interactions with the DDAPS headgroup are stronger and play a greater role in tuning DDAPS's interfacial behavior.

2.
Langmuir ; 37(41): 12213-12222, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34607422

RESUMO

While many studies have investigated synergic interactions between surfactants in mixed systems, understanding possible competitive behaviors between interfacial components of binary surfactant systems is necessary for the optimized efficacy of applications dependent on surface properties. Such is the focus of these studies in which the surface behavior of a binary surfactant mixture containing nonionic (Span-80) and anionic (AOT) components adsorbing to the oil/water interface was investigated with vibrational sum-frequency (VSF) spectroscopy and surface tensiometry experimental methods. Time-dependent spectroscopic studies reveal that while both nonionic and anionic surfactants initially adsorb to the interface, anionic surfactants desorb over time as the nonionic surfactant continues to adsorb. Concentration studies that vary the ratio of Span-80 to AOT in bulk solution show that the nonionic surfactant preferentially adsorbs to the oil/water interface over the anionic surfactant. These studies have important implications for applications in which mixed surfactant systems are used to alter interfacial properties, such as pharmaceuticals, industrial films, and environmental remediation.

3.
Langmuir ; 37(29): 8658-8666, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34260854

RESUMO

Nanoemulsions, nanosized droplets of oil, are easily stabilized by interfacial electric fields from the adsorption of ionic surfactants. While mean-field theories can be used to describe the impact of these interfacial fields on droplet stability, the influence of these fields on the adsorption properties of ionic surfactants is not well-understood. In this work, we study the adsorption of the surfactant sodium dioctyl sulfosuccinate (AOT) at the nanoemulsion and planar oil-water interfaces and investigate how salt-induced charge-screening affects AOT adsorption. In the absence of salt, vibrational sum-frequency scattering spectroscopy measurements reveal the ΔGads and the maximum surface density is the same for AOT at the hexadecane nanoemulsion surface as at the planar hexadecane-H2O interface. Upon the addition of NaCl, an increase in AOT surface density is detected at both interfaces, indicating that repulsive electrostatic interactions between AOT monomers are the dominant force limiting surfactant adsorption at both interfaces. The bulky alkyl chains of AOT molecules cause our observations in this study to differ from those found in previous studies investigating the adsorption of linear-chain ionic surfactants to the nanoemulsion surface. These results provide necessary information for understanding factors limiting the adsorption of ionic surfactants to nanodroplet surfaces and highlight the need for further studies into the adsorption properties of more complex macromolecules at nanoemulsion surfaces.

4.
J Phys Chem A ; 121(12): 2322-2330, 2017 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-28276245

RESUMO

Temperature-dependent infrared spectra of aqueous nitrate solutions with a range of concentrations and ionic strengths are used to determine the effect of ionic strength on the relative stabilities of different solvation geometries in aqueous nitrate ion. The asymmetric stretching absorption band from 1250 to 1450 cm-1 changes line shape with temperature, allowing two distinct peaks to be fit for each spectrum. Because each peak is assigned based on electronic structure calculations as a proxy to a different solvation motif, van't Hoff plots provide insight into the thermodynamics of exchange between different solvation geometries. A strong linear trend is seen between increased ionic strength and the magnitude of both the enthalpic and entropic contributions to the solvation geometry stabilities. Electronic structure computations of previously proposed structures in different ionic strengths are performed in the presence of external fields, roughly simulating the impact of ions in solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...