Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geroscience ; 42(1): 169-182, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31828496

RESUMO

Altered microglia function contributes to loss of CNS homeostasis during aging in the brain. Few studies have evaluated age-related alterations in spinal cord microglia. We previously demonstrated that lumbar spinal cord microglial expression of inducible nitric oxide synthase (iNOS) was equivalent between aging, neurologically normal dogs and dogs with canine degenerative myelopathy (Toedebusch et al. 2018, Mol Cell Neurosci. 88, 148-157). This unexpected finding suggested that microglia in aging spinal cord have a pro-inflammatory polarization. In this study, we reexamined our microglial results (Toedebusch et al. 2018, Mol Cell Neurosci. 88, 148-157) within the context of aging rather than disease by comparing microglia in aging versus young adult dogs. For both aging and young adult dogs, the density of microglia was significantly higher closest to the motor neuron cell body. However, there was no difference in densities between aging versus young adult dogs at all distances except for the furthest distance analyzed. The number of motor neurons with polarized microglia was higher in aging dogs; yet, the density per motor neuron of arginase-1-expressing microglia was reduced in aging dogs compared with young adult dogs. Finally, aging dogs had increased steady-state mRNA levels for genes consistent with activated microglia compared with young adult dogs. However, altered mRNA levels were limited to the lumbar spinal cord. These data suggested that aging dog spinal cord microglia exhibit regional immunophenotypic differences, which may render lumbar motor neurons more susceptible to age-related pathological insults.


Assuntos
Microglia , Medula Espinal , Envelhecimento , Animais , Cães , Neurônios Motores
2.
Exp Neurol ; 306: 158-168, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29772247

RESUMO

The distance between nodes of Ranvier, referred to as internode length, positively correlates with axon diameter, and is optimized during development to ensure maximal neuronal conduction velocity. Following myelin loss, internode length is reestablished through remyelination. However, remyelination results in short internode lengths and reduced conduction rates. We analyzed the potential role of neurofilament phosphorylation in regulating internode length during remyelination and myelination. Following ethidium bromide induced demyelination, levels of neurofilament medium (NF-M) and heavy (NF-H) phosphorylation were unaffected. Preventing NF-M lysine-serine-proline (KSP) repeat phosphorylation increased internode length by 30% after remyelination. To further analyze the role of NF-M phosphorylation in regulating internode length, gene replacement was used to produce mice in which all KSP serine residues were replaced with glutamate to mimic constitutive phosphorylation. Mimicking constitutive KSP phosphorylation reduced internode length by 16% during myelination and motor nerve conduction velocity by ~27% without altering sensory nerve structure or function. Our results suggest that NF-M KSP phosphorylation is part of a cooperative mechanism between axons and Schwann cells that together determine internode length, and suggest motor and sensory axons utilize different mechanisms to establish internode length.


Assuntos
Axônios/fisiologia , Axônios/ultraestrutura , Neurônios Motores/fisiologia , Neurônios Motores/ultraestrutura , Bainha de Mielina/fisiologia , Bainha de Mielina/ultraestrutura , Proteínas de Neurofilamentos/metabolismo , Remielinização/fisiologia , Animais , Doenças Desmielinizantes , Etídio , Masculino , Camundongos , Mutagênese Sítio-Dirigida , Bainha de Mielina/efeitos dos fármacos , Condução Nervosa , Proteínas de Neurofilamentos/genética , Fosforilação , Tempo de Reação/fisiologia , Células de Schwann/efeitos dos fármacos , Células de Schwann/ultraestrutura , Nervo Isquiático/patologia , Nervo Isquiático/ultraestrutura
3.
Mol Cell Neurosci ; 88: 148-157, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29408267

RESUMO

Toxicity within superoxide dismutase-1 (SOD1)-associated familial amyotrophic lateral sclerosis (ALS) is non-cell autonomous with direct contribution from microglia. Microglia exhibit variable expression of neuroprotective and neurotoxic molecules throughout disease progression. The mechanisms regulating microglial phenotype within ALS are not well understood. This work presents a first study to examine the specific microglial phenotypic response in close association to motor neurons in a naturally occurring disease model of ALS, canine degenerative myelopathy (DM). Microglia closely associated with motor neurons were increased in all stages of DM progression, although only DM Late reached statistical significance. Furthermore, the number of arginase-1 expressing microglia per motor neuron were significantly increased in early stages of DM, whereas the number of inducible nitric oxide synthase (iNOS)-expressing microglia per motor neuron was indistinguishable from aged controls at all stages of disease. Fractalkine, a chemotactic molecule for microglia, was expressed in motor neurons, and the fractalkine receptor was specifically localized to microglia. However, we found no correlation between microglial response and lumbar spinal cord fractalkine levels. Taken together, these data suggest that arginase-1-expressing microglia are recruited to the motor neuron early in DM disease through a fractalkine-independent mechanism.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Arginase/metabolismo , Microglia/metabolismo , Neurônios Motores/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Modelos Animais de Doenças , Cães , Óxido Nítrico Sintase Tipo II/metabolismo , Medula Espinal/metabolismo , Superóxido Dismutase/genética
4.
Muscle Nerve ; 56(6): E100-E107, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28073155

RESUMO

INTRODUCTION: Deletion of myostatin in mice (MSTN-/- ) alters structural properties of peripheral axons. However, properties like axon diameter and myelin thickness were analyzed in mixed nerves, so it is unclear whether loss of myostatin affects motor, sensory, or both types of axons. METHODS: Using the MSTN-/- mouse model, we analyzed the effects of increasing the number of muscle fibers on axon diameter, myelin thickness, and internode length in motor and sensory axons. RESULTS: Axon diameter and myelin thickness were increased in motor axons of MSTN-/- mice without affecting internode length or axon number. The number of sensory axons was increased without affecting their structural properties. DISCUSSION: These results suggest that motor and sensory axons establish structural properties by independent mechanisms. Moreover, in motor axons, instructive cues from the neuromuscular junction may play a role in co-regulating axon diameter and myelin thickness, whereas internode length is established independently. Muscle Nerve 56: E100-E107, 2017.


Assuntos
Axônios/metabolismo , Neurônios Motores/metabolismo , Miostatina/deficiência , Condução Nervosa/fisiologia , Células Receptoras Sensoriais/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios Motores/citologia , Células Receptoras Sensoriais/citologia
5.
Methods Enzymol ; 568: 461-76, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26795480

RESUMO

Neurofilament biology is important to understanding structural properties of axons, such as establishment of axonal diameter by radial growth. In order to study the function of neurofilaments, a series of genetically modified mice have been generated. Here, we describe a brief history of genetic modifications used to study neurofilaments, as well as an overview of the steps required to generate a gene-targeted mouse. In addition, we describe steps utilized to analyze neurofilament phosphorylation status using immunoblotting. Taken together, these provide comprehensive analysis of neurofilament function in vivo, which can be applied to many systems.


Assuntos
Proteínas de Neurofilamentos/metabolismo , Animais , Humanos , Mutagênese Sítio-Dirigida , Proteínas de Neurofilamentos/genética , Fosforilação
6.
Neurobiol Dis ; 85: 218-224, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26563933

RESUMO

Physical activity has long been hypothesized to influence the risk and pathology of Alzheimer's disease. However, the amount of physical activity necessary for these benefits is unclear. We examined the effects of three months of low and high intensity exercise training on soluble Aß40 and Aß42 levels in extracellular enriched fractions from the cortex and hippocampus of young Tg2576 mice. Low (LOW) and high (HI) intensity exercise training animals ran at speeds of 15m/min on a level treadmill and 32 m/min at a 10% grade, respectively for 60 min per day, five days per week, from three to six months of age. Sedentary mice (SED) were placed on a level, non-moving, treadmill for the same duration. Soleus muscle citrate synthase activity increased by 39% in the LOW group relative to SED, and by 71% in the HI group relative to LOW, indicating an exercise training effect in these mice. Soluble Aß40 concentrations decreased significantly in an exercise training dose-dependent manner in the cortex. In the hippocampus, concentrations were decreased significantly in the HI group relative to LOW and SED. Soluble Aß42 levels also decreased significantly in an exercise training dose-dependent manner in both the cortex and hippocampus. Five proteins involved in Aß clearance (neprilysin, IDE, MMP9, LRP1 and HSP70) were elevated by exercise training with its intensity playing a role in each case. Our data demonstrate that exercise training reduces extracellular soluble Aß in the brains of Tg2576 mice in a dose-dependent manner through an up-regulation of Aß clearance.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Terapia por Exercício/métodos , Atividade Motora , Fragmentos de Peptídeos/metabolismo , Animais , Córtex Cerebral/metabolismo , Citrato (si)-Sintase/metabolismo , Modelos Animais de Doenças , Proteínas de Choque Térmico HSP70/metabolismo , Hipocampo/efeitos dos fármacos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Neprilisina/metabolismo , RNA Mensageiro/metabolismo , Distribuição Aleatória , Receptores de LDL/metabolismo , Resultado do Tratamento , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...