Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Tipo de estudo
Intervalo de ano de publicação
1.
Glob Chall ; 8(4): 2300315, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38617029

RESUMO

Carbons form critical components in biogas purification and energy storage systems and are used to modify polymer matrices. The environmental impact of producing carbons has driven research interest in biomass-derived carbons, although these have yield, processing, and resource competition limitations. Naturally formed fungal filaments are investigated, which are abundantly available as food- and biotechnology-industry by-products and wastes as cost-effective and sustainable templates for carbon networks. Pyrolyzed Agaricus bisporus and Pleurotus eryngii filament networks are mesoporous and microscale with a size regime close to carbon fibers. Their BET surface areas of ≈282 m2 g-1 and ≈60 m2 g-1, respectively, greatly exceed values associated with carbon fibers and non-activated pyrolyzed bacterial cellulose and approximately on par with values for carbon black and CNTs in addition to pyrolyzed pinewood, rice husk, corn stover or olive mill waste. They also exhibit greater specific capacitance than both non-activated and activated pyrolyzed bacterial cellulose in addition to YP-50F (coconut shell based) commercial carbons. The high surface area and specific capacitance of fungal carbon coupled with the potential to tune these properties through species- and growth-environment-associated differences in network and filament morphology and inclusion of inorganic material through biomineralization makes them potentially useful in creating supercapacitors.

3.
Polymers (Basel) ; 13(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34451165

RESUMO

Plastic recycling strikes a balance between functional, mass producible products and environmental sustainability and is pegged by governments for rapid expansion. However, ambitious targets on recycled material adoption across new markets are at odds with the often heterogenous properties of contaminated regranulates. This study investigated polypropylene (PP) contamination in post-consumer low-density polyethylene (PE-LD) and mixed polyolefin (PO) regranulates. Calibration curves were constructed and PP content, its effect on mechanical properties and property recovery in compatibilised material assessed. FT-IR band ratios provided more reliable estimations of PP content than DSC melt enthalpy, which suffered considerable error for PP copolymers. PE-LD regranulates contained up to 7 wt.% PP contamination and were considerably more brittle than virgin PE-LD. Most mixed PO regranulates contained 45-95 wt.% PP and grew more brittle with increasing PP content. Compatibilisation with 5 wt.% ethylene-based olefin block copolymer resulted in PE-LD blends resembling virgin PE-LD and considerable improvements in the properties of mixed PO blends. These results illustrate the prevalence of PP in recycled PE, challenges associated with its quantification, effect on mechanical properties, and compatibilisation viability, thereby representing an important step towards higher quality regranulates to meet the recycling demands of tomorrow.

4.
Trends Biotechnol ; 39(12): 1321-1331, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33812663

RESUMO

Fungi are a revolutionary, smart, and sustainable manufacturing platform that can be used to upcycle byproducts and wastes into flexible fungal materials (FFMs) such as chitin- and ß-glucan-based foams, paper, and textiles. With highly adaptable manufacturing pathways, the efficiency and properties of these materials depend on the biomass source and fermentation method. Liquid substrates provide fast, upscalable, and compact production processes but are susceptible to contamination and are limited to paper-like materials for printing, wound dressings, and membranes. Solid-state fermentation is cheaper but struggles to deliver homogeneous fungal growth and is used to produce fungal foams for packaging, insulation, textiles, and leather substitutes. The broad range of applications and uses of biological organisms in materials hallmarks fungi as forerunners in improving environmental sustainability globally.


Assuntos
Quitina , Fungos , Bandagens , Biomassa , Quitina/química , Quitina/metabolismo , Fermentação , Fungos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...