Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
R Soc Open Sci ; 6(7): 182158, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31417704

RESUMO

Previous work has shown a strong correlation between zeolite framework flexibility and the nature of structural symmetry and phase transitions. However, there is little experimental data regarding this relationship, in addition to how flexibility can be connected to the synthesis of these open-framework materials. This is of interest for the synthesis of novel zeolites, which require organic additives to permutate the resulting geometry and symmetry of the framework. Here, we have used high-pressure powder X-ray diffraction to study the three zeolites: Na-X, RHO and ZK-5, which can all be prepared using 18-crown-6 ether as an organic additive. We observe significant differences in how the occluded 18-crown-6 ether influences the framework flexibility-this being dependent on the geometry of the framework. We use these differences as an indicator to define the role of 18-crown-6 ether during zeolite crystallization. Furthermore, in conjunction with previous work, we predict that pressure-induced symmetry transitions are intrinsic to body-centred cubic zeolites. The high symmetry yields fewer degrees of freedom, meaning it is energetically favourable to lower the symmetry to facilitate further compression.

2.
Molecules ; 24(3)2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759754

RESUMO

The roles of organic additives in the assembly and crystallisation of zeolites are still not fully understood. This is important when attempting to prepare novel frameworks to produce new zeolites. We consider 18-crown-6 ether (18C6) as an additive, which has previously been shown to differentiate between the zeolite EMC-2 (EMT) and faujasite (FAU) frameworks. However, it is unclear whether this distinction is dictated by influences on the metastable free-energy landscape or geometric templating. Using high-pressure synchrotron X-ray diffraction, we have observed that the presence of 18C6 does not impact the EMT framework flexibility-agreeing with our previous geometric simulations and suggesting that 18C6 does not behave as a geometric template. This was further studied by computational modelling using solid-state density-functional theory and lattice dynamics calculations. It is shown that the lattice energy of FAU is lower than EMT, but is strongly impacted by the presence of solvent/guest molecules in the framework. Furthermore, the EMT topology possesses a greater vibrational entropy and is stabilised by free energy at a finite temperature. Overall, these findings demonstrate that the role of the 18C6 additive is to influence the free energy of crystallisation to assemble the EMT framework as opposed to FAU.


Assuntos
Zeolitas/química , Éteres de Coroa/química , Cristalização/métodos , Pressão , Temperatura , Difração de Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...