Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
HardwareX ; 12: e00372, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36393916

RESUMO

While for vision and audio the same mass-produced units can be embedded in many different systems from smartphones to robots, tactile sensors have to be built in application-specific shapes and sizes. To use a commercially available tactile sensor, it can be necessary to develop the entire system around an existing sensor model. We present a set of open-source solutions for designing, manufacturing, reading and integrating custom application-specific tactile matrix sensors. Our manufacturing process only requires an off-the-shelf cutting plotter and widely available plastic and metal foils. This allows creating sensors of diverse sizes, shapes, and layouts, which can be adapted to various specific use cases as demonstrated with exemplary robot integrations. For interfacing and readout, we develop an Arduino-like prototype board (Tacduino) with amplifier circuits to ensure good resolution and to suppress crosstalk. As an example, we give step-by-step instructions to build tactile fingertips for the RobotiQ 3-Finger Gripper, and we provide design files for the readout circuit board together with Arduino firmware and driver software. Both, wired and wireless communication between the sensors and a host PC are supported by this system. The hardware was originally presented and investigated in [1].

2.
Sensors (Basel) ; 20(4)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32075193

RESUMO

Grasping force control is important for multi-fingered robotic hands to stabilize the grasped object. Humans are able to adjust their grasping force and react quickly to instabilities through tactile sensing. However, grasping force control through tactile sensing with robotic hands is still relatively unexplored. In this paper, we make use of tactile sensing for multi-fingered robot hands to adjust the grasping force to stabilize unknown objects without prior knowledge of their shape or physical properties. In particular, an online detection module based on Deep Neural Network (DNN) is designed to detect contact events and object material simultaneously from tactile data. In addition, a force estimation method based on Gaussian Mixture Model (GMM) is proposed to compute the contact information (i.e., contact force and contact location) from tactile data. According to the results of tactile sensing, an object stabilization controller is then employed for a robotic hand to adjust the contact configuration for object stabilization. The spatio-temporal property of tactile data is exploited during tactile sensing. Finally, the effectiveness of the proposed framework is evaluated in a real-world experiment with a five-fingered Shadow Dexterous Hand equipped with BioTac sensors.


Assuntos
Dedos/fisiologia , Força da Mão/fisiologia , Robótica , Tato/fisiologia , Eletrodos , Humanos , Sistemas On-Line
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...