Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34833173

RESUMO

This study addresses some issues regarding the problems of applying CAE to the injection molding production process where quite complex factors inhibit its effective utilization. In this study, an artificial neural network, namely a backpropagation neural network (BPNN), is utilized to render results predictions for the injection molding process. By inputting the plastic temperature, mold temperature, injection speed, holding pressure, and holding time in the molding parameters, these five results are more accurately predicted: EOF pressure, maximum cooling time, warpage along the Z-axis, shrinkage along the X-axis, and shrinkage along the Y-axis. This study first uses CAE analysis data as training data and reduces the error value to less than 5% through the Taguchi method and the random shuffle method, which we introduce herein, and then successfully transfers the network, which CAE data analysis has predicted to the actual machine for verification with the use of transfer learning. This study uses a backpropagation neural network (BPNN) to train a dedicated prediction network using different, large amounts of data for training the network, which has proved fast and can predict results accurately using our optimized model.

2.
Polymers (Basel) ; 13(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34577966

RESUMO

In this study, the assembly behavior for two injected components made by a family mold system were investigated. Specifically, a feasible method was proposed to evaluate the characteristic length of two components within a family mold system using numerical simulation and experimental validation. Results show that as the packing pressure increases, the product index (characteristic length) becomes worse. This tendency was consistent for both the simulation prediction and experimental observation. However, for the same operation condition setting through a basic test, there were some differences in the product index between the simulation prediction and experimental observation. Specifically, the product index difference of the experimental observation was 1.65 times over that of the simulation prediction. To realize that difference between simulation and experiment, a driving force index (DFI) based on the injection pressure history curve was proposed. Through the DFI investigation, the internal driving force of the experimental system was shown to be 1.59 times over that of the simulation. The DFI was further used as the basis for machine calibration. Furthermore, after finishing machine calibration, the integrated CAE and DOE (called CAE-DOE) strategy can optimize the ease of assembly up to 20%. The result was validated by experimental observation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...