Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
3 Biotech ; 13(3): 88, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36811032

RESUMO

A recombinant version of the AGAAN antimicrobial peptide (rAGAAN) was cloned, expressed, and purified in this study. Its antibacterial potency and stability in harsh environments were thoroughly investigated. A 15 kDa soluble rAGAAN was effectively expressed in E. coli. The purified rAGAAN exhibited a broad antibacterial spectrum and was efficacious against seven Gram-positive and Gram-negative bacteria. The minimal inhibitory concentration (MIC) of rAGAAN against the growth of M. luteus (TISTR 745) was as low as 60 µg/ml. Membrane permeation assay reveals that the integrity of the bacterial envelope is compromised. In addition, rAGAAN was resistant to temperature shock and maintained a high degree of stability throughout a reasonably extensive pH range. The bactericidal activity of rAGAAN ranged from 36.26 to 79.22% in the presence of pepsin and Bacillus proteases. Lower bile salt concentrations had no significant effect on the function of the peptide, whereas higher concentrations induced E. coli resistance. Additionally, rAGAAN exhibited minimal hemolytic activity against red blood cells. This study indicated that rAGAAN may be produced on a large scale in E. coli and that it had an excellent antibacterial activity and sufficient stability. This first work to express biologically active rAGAAN in E. coli yielded 8.01 mg/ml at 16 °C/150 rpm for 18 h in Luria Bertani (LB) medium supplemented with 1% glucose and induced with 0.5 mM IPTG. It also assesses the interfering factors that influence the activity of the peptide, demonstrating its potential for research and therapy of multidrug-resistant bacterial infections.

2.
Food Technol Biotechnol ; 60(2): 225-236, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35910276

RESUMO

Research background: Haloalkaline proteases are one of the most interesting types of commercial enzymes in various industries due to their high specific activity and stability under extreme conditions. Biochemical characterization of enzymes is an important requirement for determining their potential for application in industrial fields. Most of microbial proteases have been isolated from Bacillus spp. In this study, the purification and characterization of an extracellular haloprotease produced from Bacillus sp. KB111 strain, which was previously isolated from mangrove forest sediments, are investigated for industrial applications. Experimental approach: The whole genome of KB111 strain was identified by DNA sequencing. Its produced protease was purified by salting out and anion-exchange chromatography, characterized based on protease activity and stability using a peptide substrate, and identified by LC-MS/MS. Results and conclusions: The strain KB111 was identified as Bacillus licheniformis. The molecular mass of its extracellular protease, termed KB-SP, was estimated to be 70 kDa. The optimal pH and temperature for the activity of this protease were 7 and 50 °C, respectively, while the enzyme exhibited maximal activity in the broad salinity range of 2-4 M NaCl. It was fully stable at an alkaline pH range of 7-11 at 50 °C with a half-life of 90 min. Metal ions such as K+, Ca2+ and Mg2+ could enhance the enzyme activity. Therefore, this protease indicates a high potential for the applications in the food and feed industry, as well as the waste management since it can hydrolyse protein at high alkaline pH and salt concentrations. The amino acid profiles of the purified KB-SP determined by LC-MS/MS analysis showed high score matching with the peptidase S8 of B. licheniformis LMG 17339, corresponding to the mature domain of a minor extracellular protease (Vpr). Amino acid sequence alignment and 3D structure modelling of KB-SP showed a conserved catalytic domain, a protease-associated (PA) domain and a C-terminal domain. Novelty and scientific contribution: A novel extracellular haloprotease from B. licheniformis was purified, characterized and identified. The purified protease was identified as being a minor extracellular protease (Vpr) and this is the first report on the halotolerance of Vpr. This protease has the ability to work in harsh conditions, with a broad alkaline pH and salinity range. Therefore, it can be useful in various applications in industrial fields.

3.
Curr Pharm Biotechnol ; 23(5): 645-663, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34225618

RESUMO

Recombinant active peptides are utilized as diagnostic and biotherapeutics in various maladies and as bacterial growth inhibitors in the food industry. This consequently stimulated the need for recombinant peptides' production, which resulted in about 19 approved biotech peptides of 1- 100 amino acids commercially available. While most peptides have been produced by chemical synthesis, the production of lengthy and complicated peptides comprising natural amino acids has been problematic with low quantity. Recombinant peptide production has become very vital, costeffective, simple, environmentally friendly with satisfactory yields. Several reviews have focused on discussing expression systems, advantages, disadvantages, and alternatives strategies. Additionally, the information on the antimicrobial activities and other functions of multiple recombinant peptides is challenging to access and is scattered in literature apart from the food and drug administration (FDA) approved ones. From the reports that come to our knowledge, there is no existing review that offers substantial information on recombinant active peptides developed by researchers and their functions. This review provides an overview of some successfully produced recombinant active peptides of ≤100 amino acids by focusing on their antibacterial, antifungal, antiviral, anticancer, antioxidant, antimalarial, and immune-modulatory functions. It also elucidates their modes of expression that could be adopted and applied in future investigations. We expect that the knowledge available in this review would help researchers involved in recombinant active peptide development for therapeutic uses and other applications.


Assuntos
Antibacterianos , Peptídeos , Antivirais , Proteínas Recombinantes
4.
J Biol Chem ; 296: 100462, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33639158

RESUMO

Ribonuclease HI, an endoribonuclease, catalyzes the hydrolysis of the RNA strand of an RNA/DNA hybrid and requires divalent metal ions for its enzymatic activity. However, the mechanistic details of the activity of ribonuclease HI and its interaction with divalent metal ions remain unclear. In this study, we performed real-time monitoring of the enzyme-substrate complex in the presence of divalent metal ions (Mn2+ or Zn2+) using electrospray ionization-mass spectrometry (ESI-MS). The findings provide clear evidence that the enzymatic activity of the ternary complex requires the binding of two divalent metal ions. The Zn2+ ions bind to both the enzyme itself and the enzyme:substrate complex more strongly than Mn2+ ions, and gives, in part, the ternary complex, [RNase HI:nicked RNA/DNA hybrid:2Zn2+], suggesting that the ternary complex is retained, even after the hydrolysis of the substrate. The collective results presented herein shed new light on the essential role of divalent metal ions in the activity of ribonuclease HI and demonstrate how Zn2+ ions confer inhibitory properties on the activity of this enzyme by forming a highly stable complex with the substrate.


Assuntos
Ribonuclease H/química , Ribonuclease H/metabolismo , Sítios de Ligação , Catálise , Cátions Bivalentes/metabolismo , DNA/química , Endorribonucleases/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Hidrólise , Íons/metabolismo , Cinética , Magnésio/metabolismo , Manganês/metabolismo , RNA/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Especificidade por Substrato
5.
Curr Pharm Biotechnol ; 22(9): 1216-1227, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33081682

RESUMO

BACKGROUND: The consistently increasing reports of bacterial resistance and the reemergence of bacterial epidemics have inspired the health and scientific community to discover new molecules with antibacterial potential continuously. Frog-skin secretions constitute bioactive compounds essential for finding new biopharmaceuticals. The exact antibacterial characterization of dermaseptin related peptides derived from Agalychnis annae, is limited. The resemblance in their conserved and functionally linked genomes indicates an unprecedented opportunity to obtain novel bioactive compounds. OBJECTIVE: In this study, we derived a novel peptide sequence and determined its antibacterial potentials. METHODS: Consensus sequence strategy was used to design the novel and active antibacterial peptide named 'AGAAN' from skin secretions of Agalychnis annae. The in-vitro activities of the novel peptide against some bacterial strains were investigated. Time kill studies, DNA retardation, cytotoxicity, betagalactosidase, and molecular computational studies were conducted. RESULTS: AGAAN inhibited P. aeruginosa, E. faecalis, and S. typhimurium at 20 µM concentration. E. coli and S. aureus were inhibited at 25 µM, and lastly, B. subtilis at 50 µM. Kinetics of inactivation against exponential and stationary growing bacteria was found to be rapid within 1-5 hours of peptide exposure, depending on time and concentration. The peptide displayed weak hemolytic activity between 0.01%-7.31% at the antibacterial concentrations. AGAAN efficiently induced bacterial membrane damage with subsequent cell lysis. The peptide's DNA binding shows that it also targets intracellular DNA by retarding its movement. Our in-silico molecular docking analysis displayed a strong affinity to the bacterial cytoplasmic membrane. CONCLUSION: AGAAN exhibits potential antibacterial properties that could be used to combat bacterial resistance.


Assuntos
Proteínas de Anfíbios/química , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Anuros/metabolismo , Peptídeos/química , Sequência de Aminoácidos , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Sequência Consenso , DNA/química , DNA/metabolismo , Escherichia coli/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Peptídeos/metabolismo , Peptídeos/farmacologia , Conformação Proteica em alfa-Hélice , Pseudomonas aeruginosa/efeitos dos fármacos , Alinhamento de Sequência , Staphylococcus aureus/efeitos dos fármacos
6.
3 Biotech ; 11(1): 2, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33269186

RESUMO

The goal of this study was to identify and biochemically characterize a novel hyperthermostable keratinase from microorganisms for feather waste degradation. Here, a hyperthermophilic Geoglobus acetivorans keratinase (GacK) gene was chosen based on a search of a sequence database. The selected GacK gene was synthesized, cloned, and successfully expressed without a signal peptide in the E. coli system. A monomer of approximately 58 kDa was obtained in a soluble form and purified. The recombinant GacK displayed the highest activity at an optimum temperature of 100 °C and a pH of 10. The hyperthermostable GacK enzymatic performance remained high even after incubation in nonionic surfactants and the chelating agent EDTA. The residual and keratinolytic activities of GacK, as determined with azocasein and keratin azure used as substrates, remained significantly greater than 80% at 130 °C for 7 h. The kinetic parameters Km and Vmax for azure keratin were 0.41 mg/ml and 875.14 unit/mg, respectively, while those for azocasein were 1.51 mg/ml and 505.32 unit/mg, respectively. The results suggest that the enzyme is among the most hyperthermostable keratinases. Because of its enzymatic characteristics to degrade keratin azure at high temperatures, GacK may potentially be utilized in future industrial applications.

7.
PLoS One ; 11(6): e0158301, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27348862

RESUMO

ICP35 is a non-structural protein from White spot syndrome virus believed to be important in viral replication. Since ICP35 was found to localize in the host nucleus, it has been speculated that the function of ICP35 might be involved in the interaction of DNA. In this study, we overexpressed, purified and characterized ICP35. The thioredoxin-fused ICP35 (thio-ICP35) was strongly expressed in E. coli and be able to form itself into dimers. Investigation of the interaction between ICP35 and DNA revealed that ICP35 can perform DNase activity. Structural model of ICP35 was successfully built on TREX1, suggesting that ICP35 might adopt the folding similar to that of TREX1 protein. Several residues important for dimerization in TREX1 are also conserved in ICP35. Residue Asn126 and Asp132, which are seen to be in close proximity to metal ions in the ICP35 model, were shown through site-directed mutagenesis to be critical for DNase activity.


Assuntos
Proteínas não Estruturais Virais/genética , Vírus da Síndrome da Mancha Branca 1/genética , Clonagem Molecular , Ativação Enzimática , Exodesoxirribonucleases , Expressão Gênica , Ligação de Hidrogênio , Modelos Moleculares , Mutagênese , Fosfoproteínas , Conformação Proteica , Multimerização Proteica , Proteínas Recombinantes , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Vírus da Síndrome da Mancha Branca 1/metabolismo
8.
Med Mycol ; 54(6): 641-7, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27118800

RESUMO

Pythiosis is a life-threatening infectious disease of both humans and animals living in Asia, Americas, Africa, and parts of Australia and New Zealand. The etiologic pathogen is the fungus-like organism Pythium insidiosum The disease has high mortality and morbidity rates. Use of antifungal drugs are ineffective against P. insidiosum, leaving radical surgery the main treatment option. Prompt treatment leads to better prognosis of affected individuals, and could be achieved by early and accurate diagnosis. Since pythiosis has been increasingly reported worldwide, there is a need for a rapid, user-friendly, and efficient test that facilitates the diagnosis of the disease. This study aims to develop an immunochromatographic test (ICT), using the bacterial protein A/G, to detect anti-P. insidiosum IgGs in humans and animals, and compare its diagnostic performance with the established ELISA. Eighty-five serum samples from 28 patients, 24 dogs, 12 horses, 12 rabbits, and 9 cattle with pythiosis, and 143 serum samples from 80 human and 63 animal subjects in a healthy condition, with thalassemia, or with other fungal infections, were recruited for assay evaluation. Detection specificities of ELISA and ICT were 100.0%. While the detection sensitivity of ELISA was 98.8%, that of ICT was 90.6%. Most pythiosis sera, that were falsely read negative by ICT, were weakly positive by ELISA. In conclusion, a protein A/G-based ICT is a rapid, user-friendly, and efficient assay for serodiagnosis of pythiosis in humans and animals. Compared to ELISA, ICT has an equivalent detection specificity and a slightly lower detection sensitivity.


Assuntos
Anticorpos Antifúngicos/sangue , Cromatografia de Afinidade/métodos , Pitiose/diagnóstico , Pythium/imunologia , Testes Sorológicos/métodos , América , Animais , Ásia , Doadores de Sangue , Bovinos , Cães , Ensaio de Imunoadsorção Enzimática , Cavalos , Humanos , Imunoglobulina G/sangue , Coelhos , Sensibilidade e Especificidade
9.
Infect Genet Evol ; 35: 127-33, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26254563

RESUMO

Oomycetes are fungus-like in appearance, but form a distinct clade within the eukaryotes. While most pathogenic oomycetes infect plants, the understudied oomycete Pythium insidiosum infects humans and animals, and causes a life-threatening infectious disease, called pythiosis. Phylogenetic analyses divide P. insidiosum into 3 groups, according to geographic origins: Clade-I (Americas), Clade-II (Asia and Australia), and Clade-III (Thailand). Surgical removal of the infected organ is the inevitable treatment for patients with pythiosis, but it is often too late or unsuccessful, and many patients die from advanced infection. Understanding P. insidiosum's basic biology could lead to improved infection control. Elicitins, a unique group of proteins found only in oomycetes, are involved in sterol acquisition and stimulation of host responses. Recently, we identified glycosylated and non-glycosylated forms of the elicitin-like protein, ELI025, which is secreted by P. insidiosum, and detected during P. insidiosum infection. In this study, we investigated geographic variation of ELI025 in 24 P. insidiosum strains isolated from humans, animals, and the environment. Genotypes of ELI025, based on 2 sets of PCR primers, correlated well with rDNA-based phylogenetic grouping. Unlike strains in Clade-I and -II, Clade-III strains secreted no glycosylated ELI025. Sera from 17 pythiosis patients yielded a broad range of antibody responses against ELI025, and ∼30% lacked reactivity against the protein. Selective production or secretion of glycosylated ELI025 by different P. insidiosum strains might contribute to the variable host antibody responses. In conclusion, ELI025 was secreted by all P. insidiosum strains isolated from different hosts and geographic origins, but the protein had different biochemical, and immunological characteristics. These finding contribute to the better understanding of the biology and evolution of P. insidiosum, and could lead to appropriate clinical application of the ELI025 protein for diagnosis or treatment of pythiosis.


Assuntos
Glicoproteínas/metabolismo , Pitiose/parasitologia , Pythium/isolamento & purificação , Pythium/metabolismo , Animais , DNA Ribossômico/análise , Glicoproteínas/genética , Glicoproteínas/imunologia , Glicosilação , Humanos , Filogenia , Filogeografia , Pitiose/imunologia , Pitiose/metabolismo , Pythium/classificação , Pythium/genética , Análise de Sequência de DNA
10.
J Med Assoc Thai ; 97(3): 342-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25123015

RESUMO

BACKGROUND: The fungus-like organism Pythium insidiosum is the causative agent of a life-threatening tropical infectious disease, pythiosis, which has high rates of morbidity and mortality. A lack of reliable diagnostic tools and effective treatments for pythiosis presents a major challenge to healthcare professionals. Unfortunately, surgical removal of infected organs remains the default treatment for pythiosis. P. insidiosum is an understudied organism. In-depth study of the pathogen at the molecular level could lead to better means of infection control High quality genomic DNA (gDNA) is needed for molecular biology-based research and application development, such as: PCR-assisted diagnosis, population studies, phylogenetic analysis, and molecular genetics assays. OBJECTIVE: To evaluate quality and quantity of the P. insidiosum gDNA extracted by three separate protocols intended for fungal gDNA preparation. MATERIAL AND METHOD: Seven P. insidiosum isolates were subjected to gDNA extraction by using conventional-extraction, rapid-extraction, and salt-extraction protocols. RESULTS: The conventional protocol offered the best gDNA in terms of quality and quantity, and could be scaled up. The rapid-extraction protocol had a short turnaround time, but the quality and quantity of the gDNA obtained were limited. The salt-extraction protocol was simple, rapid, and efficient, making it appealing for high throughput preparation of small-scale gDNA samples. CONCLUSION: Compared to rapid-extraction protocol, both conventional-extraction and salt-extraction protocols provided a better quality and quantity of gDNA, suitable for molecular studies of P. insidiosum. In contrast to the other two methods, the salt-extraction protocol does not require the use of hazardous and expensive materials such as phenol, chloroform, or liquid nitrogen.


Assuntos
DNA/isolamento & purificação , Pythium/genética , Animais , Genoma , Humanos , Reação em Cadeia da Polimerase/métodos , Pitiose/genética , Pythium/classificação , Pythium/isolamento & purificação
11.
J Struct Biol ; 187(2): 119-128, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24972277

RESUMO

RNase H1 from extreme halophilic archaeon Halobacterium sp. NRC-1 (Halo-RNase H1) requires ⩾2M NaCl, ⩾10mM MnCl2, or ⩾300mM MgCl2 for folding. To understand the structural basis for this salt-dependent folding of Halo-RNase H1, the crystal structure of Halo-RNase H1 was determined in the presence of 10mM MnCl2. The structure of Halo-RNase H1 highly resembles those of metagenome-derived LC11-RNase H1 and Sulfolobus tokodaii RNase H1 (Sto-RNase H1), except that it contains two Mn(2+) ions at the active site and has three bi-aspartate sites on its surface. To examine whether negative charge repulsion at these sites are responsible for low-salt denaturation of Halo-RNase H1, a series of the mutant proteins of Halo-RNase H1 at these sites were constructed. The far-UV CD spectra of these mutant proteins measured in the presence of various concentrations of NaCl suggest that these mutant proteins exist in an equilibrium between a partially folded state and a folded state. However, the fraction of the protein in a folded state is nearly 0% for the active site mutant, 40% for the bi-aspartate site mutant, and 70% for the mutant at both sites in the absence of salt. The active site mutant requires relatively low concentration (∼0.5M) of salt for folding. These results suggest that suppression of negative charge repulsion at both active and bi-aspartate sites by salt is necessary to yield a folded protein.


Assuntos
Conformação Proteica/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Ribonuclease H/química , Domínio Catalítico/efeitos dos fármacos , Cloretos/química , Cloretos/farmacologia , Halobacterium/efeitos dos fármacos , Cloreto de Magnésio/química , Cloreto de Magnésio/farmacologia , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Mutação , Ribonuclease H/efeitos dos fármacos , Cloreto de Sódio/química , Cloreto de Sódio/farmacologia
12.
FEBS J ; 279(15): 2737-53, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22686566

RESUMO

The crystal structure of ribonuclease H3 from Aquifex aeolicus (Aae-RNase H3) was determined at 2.0 Å resolution. Aae-RNase H3 consists of an N-terminal TATA box-binding protein (TBP)-like domain (N-domain) and a C-terminal RNase H domain (C-domain). The structure of the C-domain highly resembles that of Bacillus stearothermophilus RNase H3 (Bst-RNase H3), except that it contains three disulfide bonds, and the fourth conserved glutamate residue of the Asp-Glu-Asp-Glu active site motif (Glu198) is located far from the active site. These disulfide bonds were shown to contribute to hyper-stabilization of the protein. Non-conserved Glu194 was identified as the fourth active site residue. The structure of the N-domain without the C-domain also highly resembles that of Bst-RNase H3. However, the arrangement of the N-domain relative to the C-domain greatly varies for these proteins because of the difference in the linker size between the domains. The linker of Bst-RNase H3 is relatively long and flexible, while that of Aae-RNase H3 is short and assumes a helix formation. Biochemical characterizations of Aae-RNase H3 and its derivatives without the N- or C-domain or with a mutation in the N-domain indicate that the N-domain of Aae-RNase H3 is important for substrate binding, and uses the flat surface of the ß-sheet for substrate binding. However, this surface is located far from the active site and on the opposite side to the active site. We propose that the N-domain of Aae-RNase H3 is required for initial contact with the substrate. The resulting complex may be rearranged such that only the C-domain forms a complex with the substrate.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/química , Ribonucleases/química , Sequência de Aminoácidos , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Domínio Catalítico/genética , Sequência Conservada , Cristalografia por Raios X , Estabilidade Enzimática , Geobacillus stearothermophilus/enzimologia , Geobacillus stearothermophilus/genética , Modelos Moleculares , Dados de Sequência Molecular , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleases/genética , Ribonucleases/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Especificidade por Substrato
13.
FEBS J ; 277(21): 4474-89, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20875084

RESUMO

Thermotoga maritima ribonuclease H (RNase H) I (Tma-RNase HI) contains a hybrid binding domain (HBD) at the N-terminal region. To analyze the role of this HBD, Tma-RNase HI, Tma-W22A with the single mutation at the HBD, the C-terminal RNase H domain (Tma-CD) and the N-terminal domain containing the HBD (Tma-ND) were overproduced in Escherichia coli, purified and biochemically characterized. Tma-RNase HI prefers Mg(2+) to Mn(2+) for activity, and specifically loses most of the Mg(2+)-dependent activity on removal of the HBD and 87% of it by the mutation at the HBD. Tma-CD lost the ability to suppress the RNase H deficiency of an E. coli rnhA mutant, indicating that the HBD is responsible for in vivo RNase H activity. The cleavage-site specificities of Tma-RNase HI are not significantly changed on removal of the HBD, regardless of the metal cofactor. Binding analyses of the proteins to the substrate using surface plasmon resonance indicate that the binding affinity of Tma-RNase HI is greatly reduced on removal of the HBD or the mutation. These results indicate that there is a correlation between Mg(2+)-dependent activity and substrate binding affinity. Tma-CD was as stable as Tma-RNase HI, indicating that the HBD is not important for stability. The HBD of Tma-RNase HI is important not only for substrate binding, but also for Mg(2+)-dependent activity, probably because the HBD affects the interaction between the substrate and enzyme at the active site, such that the scissile phosphate group of the substrate and the Mg(2+) ion are arranged ideally.


Assuntos
Proteínas de Bactérias/metabolismo , Magnésio/farmacologia , Ribonuclease H/metabolismo , Thermotoga maritima/enzimologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação/genética , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Teste de Complementação Genética , Hidrólise/efeitos dos fármacos , Cinética , Manganês/farmacologia , Dados de Sequência Molecular , Mutação , Ligação Proteica/efeitos dos fármacos , Desnaturação Proteica , Ribonuclease H/química , Ribonuclease H/genética , Homologia de Sequência de Aminoácidos , Cloreto de Sódio/farmacologia , Especificidade por Substrato , Temperatura , Thermotoga maritima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...