Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Cell Biol ; 33(1): 18-29, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778326

RESUMO

The nuclear envelope (NE) is central to the architecture of eukaryotic cells, both as a physical barrier separating the nucleus from the cytoplasm and as gatekeeper of selective transport between them. However, in open mitosis, the NE fragments to allow for spindle formation and segregation of chromosomes, resulting in intermixing of nuclear and cytoplasmic soluble fractions. Recent studies have shed new light on the mechanisms driving reinstatement of soluble proteome homeostasis following NE reformation in daughter cells. Here, we provide an overview of how mitotic cells confront this challenge to ensure continuity of basic cellular functions across generations and elaborate on the implications for the proteasome - a macromolecular machine that functions in both cytoplasmic and nuclear compartments.


Assuntos
Núcleo Celular , Proteostase , Humanos , Núcleo Celular/metabolismo , Mitose , Citoplasma/metabolismo , Membrana Nuclear/genética
2.
J Cell Sci ; 136(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36382597

RESUMO

The endosomal system orchestrates the transport of lipids, proteins and nutrients across the entire cell. Along their journey, endosomes mature, change shape via fusion and fission, and communicate with other organelles. This intriguing endosomal choreography, which includes bidirectional and stop-and-go motions, is coordinated by the microtubule-based motor proteins dynein and kinesin. These motors bridge various endosomal subtypes to the microtubule tracks thanks to their cargo-binding domain interacting with endosome-associated proteins, and their motor domain interacting with microtubules and associated proteins. Together, these interactions determine the mobility of different endosomal structures. In this Review, we provide a comprehensive overview of the factors regulating the different interactions to tune the fascinating dance of endosomes along microtubules.


Assuntos
Dineínas , Cinesinas , Dineínas/metabolismo , Endossomos/metabolismo , Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo
4.
Immunity ; 55(6): 982-997.e8, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35617964

RESUMO

Antigen cross-presentation, wherein dendritic cells (DCs) present exogenous antigen on major histocompatibility class I (MHC-I) molecules, is considered the primary mechanism by which DCs initiate tumor-specific CD8+ T cell responses. Here, we demonstrate that MHC-I cross-dressing, an antigen presentation pathway in which DCs acquire and display intact tumor-derived peptide:MHC-I molecules, is also important in orchestrating anti-tumor immunity. Cancer cell MHC-I expression was required for optimal CD8+ T cell activation in two subcutaneous tumor models. In vivo acquisition of tumor-derived peptide:MHC-I molecules by DCs was sufficient to induce antigen-specific CD8+ T cell priming. Transfer of tumor-derived human leukocyte antigen (HLA) molecules to myeloid cells was detected in vitro and in human tumor xenografts. In conclusion, MHC-I cross-dressing is crucial for anti-tumor CD8+ T cell priming by DCs. In addition to quantitatively enhancing tumor antigen presentation, MHC cross-dressing might also enable DCs to more faithfully and efficiently mirror the cancer cell peptidome.


Assuntos
Células Dendríticas , Neoplasias , Apresentação de Antígeno , Antígenos de Neoplasias , Bandagens , Linfócitos T CD8-Positivos , Apresentação Cruzada , Antígenos de Histocompatibilidade Classe I , Humanos , Complexo Principal de Histocompatibilidade , Neoplasias/metabolismo , Peptídeos
5.
iScience ; 24(2): 102051, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33554062

RESUMO

Tumors with an impaired transporter associated with antigen processing (TAP) present several endoplasmic reticulum-derived self-antigens on HLA class I (HLA-I) which are absent on healthy cells. Selection of such TAP-independent antigens for T cell-based immunotherapy should include analysis of their expression on healthy cells to prevent therapy-induced adverse toxicities. However, it is unknown how the absence of clinically relevant antigens on healthy cells needs to be validated. Here, we monitored TAP-independent antigen presentation on various healthy cells after establishing a T cell tool recognizing a TAP-independent signal sequence receptor 1-derived antigen. We found that most but not all healthy cells present this antigen under normal and inflammatory conditions, indicating that TAP-independent antigen presentation is a variable phenomenon. Our data emphasize the necessity of extensive testing of a wide variety of healthy cell types to define clinically relevant TAP-independent antigens that can be safely targeted by immunotherapy.

7.
Cell Rep ; 34(3): 108659, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33472082

RESUMO

The endolysosomal system fulfills a wide variety of cellular functions, many of which are modulated through interactions with other organelles. In particular, the ER exerts spatiotemporal constraints on the organization and motility of endosomes and lysosomes. We have recently described the ER transmembrane E3 ubiquitin ligase RNF26 as a regulator of endolysosomal perinuclear positioning and transport dynamics. Here, we report that the ubiquitin conjugating enzyme UBE2J1, also anchored in the ER membrane, partners with RNF26 in this context, and that the cellular activity of the resulting E2/E3 pair is localized in a perinuclear ER subdomain and supported by transmembrane interactions. Through modification of SQSTM1/p62 on lysine 435, the ER-embedded UBE2J1/RNF26 ubiquitylation complex recruits endosomal adaptors to immobilize their cognate vesicles in the perinuclear region of the cell. The resulting spatiotemporal compartmentalization promotes the trafficking of activated EGFR to lysosomes and facilitates the termination of EGF-induced AKT signaling.


Assuntos
Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Análise Espaço-Temporal , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Humanos
8.
Immunity ; 54(1): 132-150.e9, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33271119

RESUMO

HLA class I (HLA-I) glycoproteins drive immune responses by presenting antigens to cognate CD8+ T cells. This process is often hijacked by tumors and pathogens for immune evasion. Because options for restoring HLA-I antigen presentation are limited, we aimed to identify druggable HLA-I pathway targets. Using iterative genome-wide screens, we uncovered that the cell surface glycosphingolipid (GSL) repertoire determines effective HLA-I antigen presentation. We show that absence of the protease SPPL3 augmented B3GNT5 enzyme activity, resulting in upregulation of surface neolacto-series GSLs. These GSLs sterically impeded antibody and receptor interactions with HLA-I and diminished CD8+ T cell activation. Furthermore, a disturbed SPPL3-B3GNT5 pathway in glioma correlated with decreased patient survival. We show that the immunomodulatory effect could be reversed through GSL synthesis inhibition using clinically approved drugs. Overall, our study identifies a GSL signature that inhibits immune recognition and represents a potential therapeutic target in cancer, infection, and autoimmunity.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Linfócitos T CD8-Positivos/imunologia , Glioma/imunologia , Glicoesfingolipídeos/metabolismo , Glicosiltransferases/metabolismo , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Imunoterapia/métodos , Apresentação de Antígeno , Ácido Aspártico Endopeptidases/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glioma/mortalidade , Glicoesfingolipídeos/imunologia , Antígenos HLA/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Ativação Linfocitária , Transdução de Sinais , Análise de Sobrevida , Evasão Tumoral
9.
Eur J Immunol ; 51(3): 734-737, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33275281

RESUMO

A single model system for integrative studies on multiple facets of antigen presentation is lacking. PAKC is a novel panel of ten cell lines knocked out for individual components of the HLA class I antigen presentation pathway. PAKC will accelerate HLA-I research in the fields of oncology, infectiology, and autoimmunity.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Autoimunidade/imunologia , Humanos , Neoplasias/imunologia , Transdução de Sinais/imunologia
10.
Nat Commun ; 11(1): 5559, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144569

RESUMO

Cholesterol import in mammalian cells is mediated by the LDL receptor pathway. Here, we perform a genome-wide CRISPR screen using an endogenous cholesterol reporter and identify >100 genes involved in LDL-cholesterol import. We characterise C18orf8 as a core subunit of the mammalian Mon1-Ccz1 guanidine exchange factor (GEF) for Rab7, required for complex stability and function. C18orf8-deficient cells lack Rab7 activation and show severe defects in late endosome morphology and endosomal LDL trafficking, resulting in cellular cholesterol deficiency. Unexpectedly, free cholesterol accumulates within swollen lysosomes, suggesting a critical defect in lysosomal cholesterol export. We find that active Rab7 interacts with the NPC1 cholesterol transporter and licenses lysosomal cholesterol export. This process is abolished in C18orf8-, Ccz1- and Mon1A/B-deficient cells and restored by a constitutively active Rab7. The trimeric Mon1-Ccz1-C18orf8 (MCC) GEF therefore plays a central role in cellular cholesterol homeostasis coordinating Rab7 activation, endosomal LDL trafficking and NPC1-dependent lysosomal cholesterol export.


Assuntos
Colesterol/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisossomos/metabolismo , Multimerização Proteica , Proteínas rab de Ligação ao GTP/metabolismo , Transporte Biológico , Sistemas CRISPR-Cas/genética , LDL-Colesterol/metabolismo , Endossomos/metabolismo , Endossomos/ultraestrutura , Corantes Fluorescentes/metabolismo , Genoma Humano , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Células HeLa , Homeostase , Humanos , Hidroximetilglutaril-CoA Sintase/metabolismo , Lisossomos/ultraestrutura , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Proteína C1 de Niemann-Pick , Ligação Proteica , proteínas de unión al GTP Rab7
11.
Cancer Immunol Res ; 7(5): 797-804, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30890530

RESUMO

MHC-bound peptides from aberrant proteins may be a specific immunotherapeutic target on cancer cells. Because of difficulties in identifying such antigens, viral or model antigens have so far been used to study their biological relevance. We here identify a naturally existing human T-cell epitope derived from a truncated protein. The antigenic peptide is derived from the gene TTK only through an alternative transcript containing a premature termination codon that may target the transcript for nonsense-mediated decay (NMD). This antigen is recognized by HLA-A*02:01-restricted CD8+ T cells derived from an allotransplanted leukemia patient. Functional analyses showed that these T cells failed to recognize several HLA-matched primary leukemic cells that expressed the alternative TTK transcript. Conventional antigen processing and presentation were not affected, suggesting that leukemic cells modify the generation of antigens processed from aberrant proteins. This natural TTK epitope provides insights in the source of transcripts producing antigenic epitopes in healthy and leukemic cells. Our data underscore potential pitfalls of targeting NMD-derived or other unconventionally generated epitopes as immunotherapeutic approach.


Assuntos
Epitopos de Linfócito T/imunologia , Leucemia/imunologia , Linfócitos T Citotóxicos/imunologia , Humanos
12.
Mol Immunol ; 113: 16-21, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-29224918

RESUMO

The MHC class I pathway, presenting endogenously derived peptides to T lymphocytes, is hijacked in many pathological conditions. This affects MHC class I levels and peptide presentation at the cell surface leading to immune escape of cancer cells or microbes. It is therefore important to identify the molecular mechanisms behind MHC class I expression, processing and antigen presentation. The identification of NLRC5 as regulator of MHC class I transcription was a huge step forward in understanding the transcriptional mechanism involved. Nevertheless, many questions concerning MHC class I transcription are yet unsolved. Here we illuminate current knowledge on MHC class I and NLRC5 transcription, we highlight some remaining questions and discuss the use of quickly developing high-content screening tools to reveal unknowns in MHC class I transcription in the near future.


Assuntos
Redes Reguladoras de Genes/genética , Genes MHC Classe I/genética , Animais , Apresentação de Antígeno/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Transcrição Gênica/genética
13.
Cell ; 166(1): 152-66, 2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-27368102

RESUMO

Through a network of progressively maturing vesicles, the endosomal system connects the cell's interior with extracellular space. Intriguingly, this network exhibits a bilateral architecture, comprised of a relatively immobile perinuclear vesicle "cloud" and a highly dynamic peripheral contingent. How this spatiotemporal organization is achieved and what function(s) it curates is unclear. Here, we reveal the endoplasmic reticulum (ER)-located ubiquitin ligase Ring finger protein 26 (RNF26) as the global architect of the entire endosomal system, including the trans-Golgi network (TGN). To specify perinuclear vesicle coordinates, catalytically competent RNF26 recruits and ubiquitinates the scaffold p62/sequestosome 1 (p62/SQSTM1), in turn attracting ubiquitin-binding domains (UBDs) of various vesicle adaptors. Consequently, RNF26 restrains fast transport of diverse vesicles through a common molecular mechanism operating at the ER membrane, until the deubiquitinating enzyme USP15 opposes RNF26 activity to allow vesicle release into the cell's periphery. By drawing the endosomal system's architecture, RNF26 orchestrates endosomal maturation and trafficking of cargoes, including signaling receptors, in space and time.


Assuntos
Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Neoplasias/metabolismo , Linhagem Celular Tumoral , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Proteína Sequestossoma-1/metabolismo , Vesículas Transportadoras/metabolismo , Proteases Específicas de Ubiquitina/metabolismo
14.
Bioessays ; 37(12): 1298-302, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26440125

RESUMO

Endosomes shuttle select cargoes between cellular compartments and, in doing so, maintain intracellular homeostasis and enable interactions with the extracellular space. Directionality of endosomal transport critically impinges on cargo fate, as retrograde (microtubule minus-end directed) traffic delivers vesicle contents to the lysosome for proteolysis, while the opposing anterograde (plus-end directed) movement promotes recycling and secretion. Intriguingly, the endoplasmic reticulum (ER) is emerging as a key player in spatiotemporal control of late endosome and lysosome transport, through the establishment of physical contacts with these organelles. Earlier studies have described how minus-end-directed motor proteins become discharged from vesicles engaged at such contact sites. Now, Raiborg et al. implicate ER-mediated interactions, induced by protrudin, in loading plus-end-directed motor kinesin-1 onto endosomes, thereby stimulating their transport toward the cell's periphery. In this review, we recast the prevailing concepts on bidirectional late endosome transport and discuss the emerging paradigm of inter-compartmental regulation from the ER-endosome interface viewpoint.


Assuntos
Transporte Biológico/fisiologia , Retículo Endoplasmático/fisiologia , Endossomos/fisiologia , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Cinesinas/metabolismo , Lisossomos/metabolismo , Lisossomos/fisiologia
15.
Trends Cell Biol ; 25(3): 112-24, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25466831

RESUMO

A cell constitutes the minimal self-replicating unit of all organisms, programmed to propagate its genome as it proceeds through mitotic cell division. The molecular processes entrusted with ensuring high fidelity of DNA replication and subsequent segregation of chromosomes between daughter cells have therefore been studied extensively. However, to process the information encoded in its genome a cell must also pass on its non-genomic identity to future generations. To achieve productive sharing of intracellular organelles, cells have evolved complex mechanisms of organelle inheritance. Many membranous compartments undergo vast spatiotemporal rearrangements throughout mitosis. These controlled organizational changes are crucial to enabling completion of the division cycle and ensuring successful progeny. Herein we review current understanding of intracellular organelle segregation during mitotic division in mammalian cells, with a focus on compartment organization and integrity throughout the inheritance process.


Assuntos
Mitose , Organelas/fisiologia , Animais , Transporte Biológico , Membrana Celular/fisiologia , Endocitose , Humanos
16.
Methods Mol Biol ; 960: 53-65, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23329478

RESUMO

MHC class I molecules display peptides at the cell surface that are mostly derived from cytosolic or nuclear proteins. Since peptide loading of MHC class I molecules occurs in the ER lumen, cytosolic peptides have to pass the ER membrane. The peptide transporter TAP translocates peptides over this ER membrane which is critical for successful MHC class I antigen presentation. How peptide translocation by TAP can be assayed and inhibitors of chemical or viral origin can be identified, will be described here.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Peptídeos/metabolismo , Proteínas de Bactérias/metabolismo , Catálise , Linhagem Celular , Cloraminas/química , Corantes Fluorescentes/química , Halogenação , Humanos , Microssomos/metabolismo , Peptídeos/química , Peptídeos/isolamento & purificação , Permeabilidade , Transporte Proteico , Estreptolisinas/metabolismo , Compostos de Tosil/química
17.
Nat Rev Immunol ; 11(12): 823-36, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-22076556

RESUMO

The molecular details of antigen processing and presentation by MHC class I and class II molecules have been studied extensively for almost three decades. Although the basic principles of these processes were laid out approximately 10 years ago, the recent years have revealed many details and provided new insights into their control and specificity. MHC molecules use various biochemical reactions to achieve successful presentation of antigenic fragments to the immune system. Here we present a timely evaluation of the biology of antigen presentation and a survey of issues that are considered unresolved. The continuing flow of new details into our understanding of the biology of MHC class I and class II antigen presentation builds a system involving several cell biological processes, which is discussed in this Review.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Animais , Apresentação de Antígeno/genética , Transporte Biológico , Células Dendríticas/imunologia , Retículo Endoplasmático/metabolismo , Genes MHC Classe I , Genes MHC da Classe II , Humanos , Camundongos , Modelos Imunológicos , Complexos Multiproteicos/imunologia , Fragmentos de Peptídeos/imunologia , Polimorfismo Genético , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/imunologia , Relação Estrutura-Atividade , Teoria de Sistemas
18.
Cell ; 145(2): 268-83, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21458045

RESUMO

MHC class II molecules (MHC-II) present peptides to T helper cells to facilitate immune responses and are strongly linked to autoimmune diseases. To unravel processes controlling MHC-II antigen presentation, we performed a genome-wide flow cytometry-based RNAi screen detecting MHC-II expression and peptide loading followed by additional high-throughput assays. All data sets were integrated to answer two fundamental questions: what regulates tissue-specific MHC-II transcription, and what controls MHC-II transport in dendritic cells? MHC-II transcription was controlled by nine regulators acting in feedback networks with higher-order control by signaling pathways, including TGFß. MHC-II transport was controlled by the GTPase ARL14/ARF7, which recruits the motor myosin 1E via an effector protein ARF7EP. This complex controls movement of MHC-II vesicles along the actin cytoskeleton in human dendritic cells (DCs). These genome-wide systems analyses have thus identified factors and pathways controlling MHC-II transcription and transport, defining targets for manipulation of MHC-II antigen presentation in infection and autoimmunity.


Assuntos
Apresentação de Antígeno , Estudo de Associação Genômica Ampla , Antígenos de Histocompatibilidade Classe II/imunologia , Actinas/metabolismo , Autoimunidade , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Miosinas/metabolismo , Interferência de RNA
19.
Curr Opin Immunol ; 23(1): 88-95, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21112200

RESUMO

MHC class II molecules (MHC-II) present antigenic fragments acquired in the endocytic route to the immune system for recognition and activation of CD4+ T cells. This ignites a series of immune responses. MHC-II strongly correlates to most autoimmune diseases. Understanding the biology of MHC-II is therefore expected to translate into novel means of autoimmunity control or immune response improvement. Although the basic cell biology of MHC-II antigen presentation is well understood, many novel aspects have been uncovered in recent years including means of antigen delivery, preparation for MHC-II loading, transport processes and vaccination strategies. We will discuss past, present and future of these insights into the biology of MHC-II.


Assuntos
Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe II/imunologia , Animais , Membrana Celular/imunologia , Membrana Celular/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Transporte Proteico , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...