Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Alzheimers Res Ther ; 5(2): 19, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23597079

RESUMO

INTRODUCTION: Modulation of the gamma-secretase enzyme, which reduces the production of the amyloidogenic Aß42 peptide while sparing the production of other Aß species, is a promising therapeutic approach for the treatment of Alzheimer's disease. Satori has identified a unique class of small molecule gamma-secretase modulators (GSMs) capable of decreasing Aß42 levels in cellular and rodent model systems. The compound class exhibits potency in the nM range in vitro and is selective for lowering Aß42 and Aß38 while sparing Aß40 and total Aß levels. In vivo, a compound from the series, SPI-1865, demonstrates similar pharmacology in wild-type CD1 mice, Tg2576 mice and Sprague Dawley rats. METHODS: Animals were orally administered either a single dose of SPI-1865 or dosed for multiple days. Aß levels were measured using a sensitive plate-based ELISA system (MSD) and brain and plasma exposure of drug were assessed by LC/MS/MS. RESULTS: In wild-type mice using either dosing regimen, brain Aß42 and Aß38 levels were decreased upon treatment with SPI-1865 and little to no statistically meaningful effect on Aß40 was observed, reflecting the changes observed in vitro. In rats, brain Aß levels were examined and similar to the mouse studies, brain Aß42 and Aß38 were lowered. Comparable changes were also observed in the Tg2576 mice, where Aß levels were measured in brain as well as plasma and CSF. CONCLUSIONS: Taken together, these data indicate that SPI-1865 is orally bioavailable, brain penetrant, and effective at lowering Aß42 in a dose responsive manner. With this unique profile, the class of compounds represented by SPI-1865 may be a promising new therapy for Alzheimer's disease.

2.
Int J Alzheimers Dis ; 2012: 210756, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23320246

RESUMO

The Amyloid Hypothesis states that the cascade of events associated with Alzheimer's disease (AD)-formation of amyloid plaques, neurofibrillary tangles, synaptic loss, neurodegeneration, and cognitive decline-are triggered by Aß peptide dysregulation (Kakuda et al., 2006, Sato et al., 2003, Qi-Takahara et al., 2005). Since γ-secretase is critical for Aß production, many in the biopharmaceutical community focused on γ-secretase as a target for therapeutic approaches for Alzheimer's disease. However, pharmacological approaches to control γ-secretase activity are challenging because the enzyme has multiple, physiologically critical protein substrates. To lower amyloidogenic Aß peptides without affecting other γ-secretase substrates, the epsilon (ε) cleavage that is essential for the activity of many substrates must be preserved. Small molecule modulators of γ-secretase activity have been discovered that spare the ε cleavage of APP and other substrates while decreasing the production of Aß(42). Multiple chemical classes of γ-secretase modulators have been identified which differ in the pattern of Aß peptides produced. Ideally, modulators will allow the ε cleavage of all substrates while shifting APP cleavage from Aß(42) and other highly amyloidogenic Aß peptides to shorter and less neurotoxic forms of the peptides without altering the total Aß pool. Here, we compare chemically distinct modulators for effects on APP processing and in vivo activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA