Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Obstet Gynecol Scand ; 102(12): 1741-1748, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37680134

RESUMO

INTRODUCTION: The risk for brain injury manifested as cerebral palsy is higher in very preterm born children than in term. Prenatal administration of magnesium sulfate (MgSO4 ) has been shown to be neuroprotective and reduces the proportion of very preterm born children later diagnosed with cerebral palsy. A Swedish national clinical practice guideline was implemented in March 2020, stipulating the administration of a single intravenous dose of 6 g MgSO4 1-24 h prior to delivery before gestational age 32+0, aiming for 90% treatment coverage. The aim of this study was to evaluate the feasibility of this new clinical practice guideline in the first year of its implementation. MATERIAL AND METHODS: Data on MgSO4 treatment were collected by reviewing the medical charts of women who gave birth to live born children in gestational age 22+0-31+6 during the period of March 1, 2020 to February 28, 2021, at five Swedish university hospitals. Women with pre-eclampsia, eclampsia, or high elevated liver enzymes low platelets (HELLP) were excluded. RESULTS: A total of 388 women were eligible and 79% received treatment with MgSO4 . Of the 21% not receiving treatment, 9% did not receive treatment due to lack of knowledge about the clinical practice guideline, 9% were not possible to treat and 3% had missing data. The proportion treated increased from 72% to 87% from the first to the last 3 months. Of those treated, 81% received the drug within the stipulated timeframe (mean 8.7 h, median 3.4 h). CONCLUSIONS: There was a positive trend over time in the proportion of women receiving MgSO4 treatment, but the a priori target of 90% was not reached during the first year of implementation. Our findings indicate that this target could be reached with additional information to clinicians.


Assuntos
Paralisia Cerebral , Fármacos Neuroprotetores , Nascimento Prematuro , Gravidez , Criança , Recém-Nascido , Feminino , Humanos , Adulto , Adulto Jovem , Nascimento Prematuro/prevenção & controle , Sulfato de Magnésio/uso terapêutico , Neuroproteção , Seguimentos , Paralisia Cerebral/prevenção & controle , Estudos de Viabilidade , Cuidado Pré-Natal , Fármacos Neuroprotetores/uso terapêutico
2.
Acta Obstet Gynecol Scand ; 101(8): 856-861, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35501953

RESUMO

INTRODUCTION: Magnesium sulfate is used world-wide to treat pregnant women at imminent risk of preterm delivery in order to protect the brain of the premature infant. Previous research has shown that magnesium sulfate decreases the risk of cerebral palsy by ~30% in infants born preterm. Despite this, the dosage required for optimal neuroprotection remains unknown. We aimed to investigate whether 6 g magnesium sulfate given as a single bolus dose was tolerable for the women and infants and whether the desired target concentration in the mother's blood was reached and non-toxic level in the infant could be ensured. MATERIAL AND METHODS: In total, 49 women who were at risk of delivery prior to 32 weeks of gestation were recruited. They received a bolus dose of 6 g magnesium sulfate intravenously between 1 and 24 h prior to giving birth and were closely monitored during and after infusion. Blood samples from the patients were analyzed at different time-points (20-30 min after start of infusion, 1, 2, 6 and 24 h) post-administration. Blood samples from the umbilical cord were also taken directly after birth to assess the concentration of magnesium in the infant. RESULTS: None of the women who received magnesium sulfate reached serum magnesium concentrations >3.3 mmol/L. In all, 72% of the women showed serum magnesium levels within the therapeutic interval (2.0-3.5 mmol/L) and no adverse events were observed during the infusion. The serum magnesium levels in the mothers declined to pre-bolus-levels within 24 h after delivery. Serum magnesium levels in the umbilical cord samples ranged from 0.87 to 1.4 mmol/L, which means that all but two were within the normal expected range for a newborn premature infant. CONCLUSIONS: A bolus dose of 6 g magnesium sulfate was well tolerated and without any serious side effects in either mother or infant. Most of our women reached the targeted concentration range of serum magnesium levels after infusion was completed. Their infants had magnesium levels within acceptable levels, regardless of gestational week or mother's body mass index.


Assuntos
Paralisia Cerebral , Doenças do Prematuro , Fármacos Neuroprotetores , Nascimento Prematuro , Feminino , Humanos , Lactente , Recém-Nascido , Magnésio/uso terapêutico , Sulfato de Magnésio/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Gravidez , Nascimento Prematuro/prevenção & controle , Cuidado Pré-Natal
3.
Front Cell Neurosci ; 14: 535320, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343300

RESUMO

Germinal matrix hemorrhage (GMH) is a serious complication in extremely preterm infants associated with neurological deficits and mortality. The purpose of the present study was to develop and characterize a grade III and IV GMH model in postnatal day 5 (P5) rats, the equivalent of preterm human brain maturation. P5 Wistar rats were exposed to unilateral GMH through intracranial injection into the striatum close to the germinal matrix with 0.1, 0.2, or 0.3 U of collagenase VII. During 10 days following GMH induction, motor functions and body weight were assessed and brain tissue collected at P16. Animals were tested for anxiety, motor coordination and motor asymmetry on P22-26 and P36-40. Using immunohistochemical staining and neuropathological scoring we found that a collagenase dose of 0.3 U induced GMH. Neuropathological assessment revealed that the brain injury in the collagenase group was characterized by dilation of the ipsilateral ventricle combined with mild to severe cellular necrosis as well as mild to moderate atrophy at the levels of striatum and subcortical white matter, and to a lesser extent, hippocampus and cortex. Within 0.5 h post-collagenase injection there was clear bleeding at the site of injury, with progressive increase in iron and infiltration of neutrophils in the first 24 h, together with focal microglia activation. By P16, blood was no longer observed, although significant gray and white matter brain infarction persisted. Astrogliosis was also detected at this time-point. Animals exposed to GMH performed worse than controls in the negative geotaxis test and also opened their eyes with latency compared to control animals. At P40, GMH rats spent more time in the center of open field box and moved at higher speed compared to the controls, and continued to show ipsilateral injury in striatum and subcortical white matter. We have established a P5 rat model of collagenase-induced GMH for the study of preterm brain injury. Our results show that P5 rat pups exposed to GMH develop moderate brain injury affecting both gray and white matter associated with delayed eye opening and abnormal motor functions. These animals develop hyperactivity and show reduced anxiety in the juvenile stage.

4.
Brain ; 141(10): 2925-2942, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30165597

RESUMO

Hypoxic-ischaemic encephalopathy remains a global health burden. Despite medical advances and treatment with therapeutic hypothermia, over 50% of cooled infants are not protected and still develop lifelong neurodisabilities, including cerebral palsy. Furthermore, hypothermia is not used in preterm cases or low resource settings. Alternatives or adjunct therapies are urgently needed. Exendin-4 is a drug used to treat type 2 diabetes mellitus that has also demonstrated neuroprotective properties, and is currently being tested in clinical trials for Alzheimer's and Parkinson's diseases. Therefore, we hypothesized a neuroprotective effect for exendin-4 in neonatal neurodisorders, particularly in the treatment of neonatal hypoxic-ischaemic encephalopathy. Initially, we confirmed that the glucagon like peptide 1 receptor (GLP1R) was expressed in the human neonatal brain and in murine neurons at postnatal Day 7 (human equivalent late preterm) and postnatal Day 10 (term). Using a well characterized mouse model of neonatal hypoxic-ischaemic brain injury, we investigated the potential neuroprotective effect of exendin-4 in both postnatal Day 7 and 10 mice. An optimal exendin-4 treatment dosing regimen was identified, where four high doses (0.5 µg/g) starting at 0 h, then at 12 h, 24 h and 36 h after postnatal Day 7 hypoxic-ischaemic insult resulted in significant brain neuroprotection. Furthermore, neuroprotection was sustained even when treatment using exendin-4 was delayed by 2 h post hypoxic-ischaemic brain injury. This protective effect was observed in various histopathological markers: tissue infarction, cell death, astrogliosis, microglial and endothelial activation. Blood glucose levels were not altered by high dose exendin-4 administration when compared to controls. Exendin-4 administration did not result in adverse organ histopathology (haematoxylin and eosin) or inflammation (CD68). Despite initial reduced weight gain, animals restored weight gain following end of treatment. Overall high dose exendin-4 administration was well tolerated. To mimic the clinical scenario, postnatal Day 10 mice underwent exendin-4 and therapeutic hypothermia treatment, either alone or in combination, and brain tissue loss was assessed after 1 week. Exendin-4 treatment resulted in significant neuroprotection alone, and enhanced the cerebroprotective effect of therapeutic hypothermia. In summary, the safety and tolerance of high dose exendin-4 administrations, combined with its neuroprotective effect alone or in conjunction with clinically relevant hypothermia make the repurposing of exendin-4 for the treatment of neonatal hypoxic-ischaemic encephalopathy particularly promising.


Assuntos
Encéfalo/efeitos dos fármacos , Exenatida/farmacologia , Hipóxia-Isquemia Encefálica/patologia , Fármacos Neuroprotetores/farmacologia , Animais , Animais Recém-Nascidos , Encéfalo/patologia , Modelos Animais de Doenças , Humanos , Hipotermia Induzida , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...