Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nucl Med Commun ; 44(11): 997-1004, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37615497

RESUMO

OBJECTIVE: PET/CT and multiparametric MRI (mpMRI) are important diagnostic tools in clinically significant prostate cancer (csPC). The aim of this study was to compare csPC detection rates with [ 68 Ga]PSMA-11-PET (PSMA)-PET, [ 11 C]Acetate (ACE)-PET, and mpMRI with histopathology as reference, to identify the most suitable imaging modalities for subsequent hybrid imaging. An additional aim was to compare inter-reader variability to assess reproducibility. METHODS: During 2016-2019, all study participants were examined with PSMA-PET/mpMRI and ACE-PET/CT prior to radical prostatectomy. PSMA-PET, ACE-PET and mpMRI were evaluated separately by two observers, and were compared with histopathology-defined csPC. Statistical analyses included two-sided McNemar test and index of specific agreement. RESULTS: Fifty-five study participants were included, with 130 histopathological intraprostatic lesions >0.05 cc. Of these, 32% (42/130) were classified as csPC with ISUP grade ≥2 and volume >0.5 cc. PSMA-PET and mpMRI showed no difference in performance ( P  = 0.48), with mean csPC detection rate of 70% (29.5/42) and 74% (31/42), respectively, while with ACE-PET the mean csPC detection rate was 37% (15.5/42). Interobserver agreement was higher with PSMA-PET compared to mpMRI [79% (26/33) vs 67% (24/38)]. Including all detected lesions from each pair of observers, the detection rate increased to 90% (38/42) with mpMRI, and 79% (33/42) with PSMA-PET. CONCLUSION: PSMA-PET and mpMRI showed high csPC detection rates and superior performance compared to ACE-PET. The interobserver agreement indicates higher reproducibility with PSMA-PET. The combined result of all observers in both PSMA-PET and mpMRI showed the highest detection rate, suggesting an added value of a hybrid imaging approach.

2.
Eur Urol Focus ; 5(4): 550-560, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-29133278

RESUMO

CONTEXT: Local and regional recurrence after radical prostatectomy (RP) can be treated using salvage radiotherapy (SRT). If the recurrence can be delineated on diagnostic imaging, this could allow for increasingly individualized SRT. OBJECTIVE: This systematic review aimed at evaluating the evidence regarding the usefulness of positron emission tomography (PET) and magnetic resonance imaging (MRI) in identifying local and regional recurrences, with the aim to further individualize the SRT treatment. EVIDENCE ACQUISITION: A systematic PubMed/Medline search was conducted in December 2015. Studies included were imaging studies of post-RP patients focusing on local and/or regional recurrence where sensitivity and specificity of MRI or PET were the primary end points. Only studies using biopsy, other histological analysis, and/or treatment follow-up as reference standard were included. Quality Assessment of Diagnostic Accuracy Studies-2 was used to score the study quality. Twenty-five articles were deemed of sufficient quality and included in the review. EVIDENCE SYNTHESIS: [11C]Acetate had the highest pooled sensitivity (92%), while [11C]choline and [18F]choline had pooled sensitivities of 71% and 84%, respectively. The PET tracer with highest pooled specificity was [11C]choline (86%). Regarding MRI, MR spectroscopy combined with dynamic contrast enhanced (DCE) MRI showed the highest pooled sensitivity (89%). High pooled sensitivities were also seen using multiparametric MRI (84%), diffusion-weighted MRI combined with T2-weigthed (T2w) imaging (82%), and DCE MRI combined with T2w imaging (82%). These also showed high pooled specificities (85%, 89%, and 92%, respectively). CONCLUSIONS: Both MRI and PET have adequate sensitivity and specificity for the detection of prostate cancer recurrences post-RP. Multiparametric MRI, using diffusion-weighted and/or DCE imaging, and the choline-labeled tracers showed high pooled sensitivity and specificity, although their ranges were broad. PATIENT SUMMARY: After reviewing imaging studies of recurrent prostate cancer after prostatectomy, we concluded that choline positron emission tomography and diffusion-weighted magnetic resonance imaging can be proposed as the current standard, with high sensitivity and specificity.


Assuntos
Imageamento por Ressonância Magnética , Recidiva Local de Neoplasia/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Neoplasias da Próstata/diagnóstico por imagem , Progressão da Doença , Humanos , Masculino , Recidiva Local de Neoplasia/radioterapia , Neoplasias da Próstata/radioterapia , Terapia de Salvação
3.
Int J Radiat Oncol Biol Phys ; 103(4): 994-1003, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30496879

RESUMO

PURPOSE: To evaluate the effect of magnetic resonance (MR) imaging (MRI) geometric distortions on head and neck radiation therapy treatment planning (RTP) for an MRI-only RTP. We also assessed the potential benefits of patient-specific shimming to reduce the magnitude of MR distortions for a 3-T scanner. METHODS AND MATERIALS: Using an in-house Matlab algorithm, shimming within entire imaging volumes and user-defined regions of interest were simulated. We deformed 21 patient computed tomography (CT) images with MR distortion fields (gradient nonlinearity and patient-induced susceptibility effects) to create distorted CT (dCT) images using bandwidths of 122 and 488 Hz/mm at 3 T. Field parameters from volumetric modulated arc therapy plans initially optimized on dCT data sets were transferred to CT data to compute a new plan. Both plans were compared to determine the impact of distortions on dose distributions. RESULTS: Shimming across entire patient volumes decreased the percentage of voxels with distortions of more than 2 mm from 15.4% to 2.0%. Using the user-defined region of interest (ROI) shimming strategy, (here the Planning target volume (PTV) was the chosen ROI volume) led to increased geometric for volumes outside the PTV, as such voxels within the spinal cord with geometric shifts above 2 mm increased from 11.5% to 32.3%. The worst phantom-measured residual system distortions after 3-dimensional gradient nonlinearity correction within a radial distance of 200 mm from the isocenter was 2.17 mm. For all patients, voxels with distortion shifts of more than 2 mm resulting from patient-induced susceptibility effects were 15.4% and 0.0% using bandwidths of 122 Hz/mm and 488 Hz/mm at 3 T. Dose differences between dCT and CT treatment plans in D50 at the planning target volume were 0.4% ± 0.6% and 0.3% ± 0.5% at 122 and 488 Hz/mm, respectively. CONCLUSIONS: The overall effect of MRI geometric distortions on data used for RTP was minimal. Shimming over entire imaging volumes decreased distortions, but user-defined subvolume shimming introduced significant errors in nearby organs and should probably be avoided.


Assuntos
Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Humanos , Radiometria , Tomografia Computadorizada por Raios X
4.
Med Phys ; 2018 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-29862522

RESUMO

PURPOSE: Simultaneous collection of PET and MR data for radiotherapy purposes are useful for, for example, target definition and dose escalations. However, a prerequisite for using PET/MR in the radiotherapy workflow is the ability to image the patient in treatment position. The aim of this work was to adapt a GE SIGNA PET/MR scanner to image patients for radiotherapy treatment planning and evaluate the impact on signal-to-noise (SNR) of the MR images, and the accuracy of the PET attenuation correction. METHOD: A flat tabletop and a coil holder were developed to image patients in the treatment position, avoid patient contour deformation, and facilitate attenuation correction of flex coils. Attenuation corrections for the developed hardware and an anterior array flex coil were also measured and implemented to the PET/MR system to minimize PET quantitation errors. The reduction of SNR in the MR images due to the added distance between the coils and the patient was evaluated using a large homogenous saline-doped water phantom, and the activity quantitation errors in PET imaging were evaluated with and without the developed attenuation corrections. RESULT: We showed that the activity quantitation errors in PET imaging were within ±5% when correcting for attenuation of the flat tabletop, coil holder, and flex coil. The SNR of the MRI images were reduced to 74% using the tabletop, and 66% using the tabletop and coil holders. CONCLUSION: We present a tabletop and coil holder for an anterior array coil to be used with a GE SIGNA PET/MR scanner, for scanning patients in the radiotherapy work flow. Implementing attenuation correction of the added hardware from the radiotherapy setup leads to acceptable PET image quantitation. The drop in SNR in MR images may require adjustment of the imaging protocols.

5.
Magn Reson Med ; 80(4): 1440-1451, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29457287

RESUMO

PURPOSE: To describe a method for converting Zero TE (ZTE) MR images into X-ray attenuation information in the form of pseudo-CT images and demonstrate its performance for (1) attenuation correction (AC) in PET/MR and (2) dose planning in MR-guided radiation therapy planning (RTP). METHODS: Proton density-weighted ZTE images were acquired as input for MR-based pseudo-CT conversion, providing (1) efficient capture of short-lived bone signals, (2) flat soft-tissue contrast, and (3) fast and robust 3D MR imaging. After bias correction and normalization, the images were segmented into bone, soft-tissue, and air by means of thresholding and morphological refinements. Fixed Hounsfield replacement values were assigned for air (-1000 HU) and soft-tissue (+42 HU), whereas continuous linear mapping was used for bone. RESULTS: The obtained ZTE-derived pseudo-CT images accurately resembled the true CT images (i.e., Dice coefficient for bone overlap of 0.73 ± 0.08 and mean absolute error of 123 ± 25 HU evaluated over the whole head, including errors from residual registration mismatches in the neck and mouth regions). The linear bone mapping accounted for bone density variations. Averaged across five patients, ZTE-based AC demonstrated a PET error of -0.04 ± 1.68% relative to CT-based AC. Similarly, for RTP assessed in eight patients, the absolute dose difference over the target volume was found to be 0.23 ± 0.42%. CONCLUSION: The described method enables MR to pseudo-CT image conversion for the head in an accurate, robust, and fast manner without relying on anatomical prior knowledge. Potential applications include PET/MR-AC, and MR-guided RTP.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Idoso , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Imagem Multimodal , Imagens de Fantasmas
6.
Int J Radiat Oncol Biol Phys ; 100(2): 317-324, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29229326

RESUMO

PURPOSE: To investigate the effect of magnetic resonance system- and patient-induced susceptibility distortions from a 3T scanner on dose distributions for prostate cancers. METHODS AND MATERIALS: Combined displacement fields from the residual system and patient-induced susceptibility distortions were used to distort 17 prostate patient CT images. VMAT dose plans were initially optimized on distorted CT images and the plan parameters transferred to the original patient CT images to calculate a new dose distribution. RESULTS: Maximum residual mean distortions of 3.19 mm at a radial distance of 25 cm and maximum mean patient-induced susceptibility shifts of 5.8 mm were found using the lowest bandwidth of 122 Hz per pixel. There was a dose difference of <0.5% between distorted and undistorted treatment plans. The 90% confidence intervals of the mean difference between the dCT and CT treatment plans were all within an equivalence interval of (-0.5, 0.5) for all investigated plan quality measures. CONCLUSIONS: Patient-induced susceptibility distortions at high field strengths in closed bore magnetic resonance scanners are larger than residual system distortions after using vendor-supplied 3-dimensional correction for the delineated regions studied. However, errors in dose due to disturbed patient outline and shifts caused by patient-induced susceptibility effects are below 0.5%.


Assuntos
Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Dosagem Radioterapêutica , Tomografia Computadorizada por Raios X
7.
Radiat Oncol ; 10: 13, 2015 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-25575414

RESUMO

BACKGROUND: In this pilot study we evaluated the performance of a substitute CT (s-CT) image derived from MR data of the brain, as a basis for optimization of intensity modulated rotational therapy, final dose calculation and derivation of reference images for patient positioning. METHODS: S-CT images were created using a Gaussian mixture regression model on five patients previously treated with radiotherapy. Optimizations were compared using D max, D min, D median and D mean measures for the target volume and relevant risk structures. Final dose calculations were compared using gamma index with 1%/1 mm and 3%/3 mm acceptance criteria. 3D geometric evaluation was conducted using the DICE similarity coefficient for bony structures. 2D geometric comparison of digitally reconstructed radiographs (DRRs) was performed by manual delineation of relevant structures on the s-CT DRR that were transferred to the CT DRR and compared by visual inspection. RESULTS: Differences for the target volumes in optimization comparisons were small in general, e.g. a mean difference in both D min and D max within ±0.3%. For the final dose calculation gamma evaluations, 100% of the voxels passed the 1%/1 mm criterion within the PTV. Within the entire external volume between 99.4% and 100% of the voxels passed the 3%/3 mm criterion. In the 3D geometric comparison, the DICE index varied between approximately 0.8-0.9, depending on the position in the skull. In the 2D DRR comparisons, no appreciable visual differences were found. CONCLUSIONS: Even though the present work involves a limited number of patients, the results provide a strong indication that optimization and dose calculation based on s-CT data is accurate regarding both geometry and dosimetry.


Assuntos
Neoplasias Encefálicas/radioterapia , Glioblastoma/radioterapia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Humanos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
8.
Radiother Oncol ; 108(1): 118-22, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23830190

RESUMO

BACKGROUND: The use of magnetic resonance imaging (MRI) as a complement to computed tomography (CT) in the target definition procedure for radiotherapy is increasing. To eliminate systematic uncertainties due to image registration, a workflow based entirely on MRI may be preferable. In the present pilot study, we investigate dose calculation accuracy for automatically generated substitute CT (s-CT) images of the head based on MRI. We also produce digitally reconstructed radiographs (DRRs) from s-CT data to evaluate the feasibility of patient positioning based on MR images. METHODS AND MATERIALS: Five patients were included in the study. The dose calculation was performed on CT, s-CT, s-CT data without inhomogeneity correction and bulk density assigned MRI images. Evaluation of the results was performed using point dose and dose volume histogram (DVH) comparisons, and gamma index evaluation. RESULTS: The results demonstrate that the s-CT images improve the dose calculation accuracy compared to the method of non-inhomogeneity corrected dose calculations (mean improvement 2.0% points) and that it performs almost identically to the method of bulk density assignment. The s-CT based DRRs appear to be adequate for patient positioning of intra-cranial targets, although further investigation is needed on this subject. CONCLUSION: The s-CT method is very fast and yields data that can be used for treatment planning without sacrificing accuracy.


Assuntos
Encéfalo/efeitos da radiação , Imageamento por Ressonância Magnética/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Idoso , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Dosagem Radioterapêutica
9.
Int J Radiat Oncol Biol Phys ; 82(5): 1612-8, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21477942

RESUMO

BACKGROUND: It is well-known that magnetic resonance imaging (MRI) is preferable to computed tomography (CT) in radiotherapy target delineation. To benefit from this, there are two options available: transferring the MRI delineated target volume to the planning CT or performing the treatment planning directly on the MRI study. A precondition for excluding the CT study is the possibility to define internal structures visible on both the planning MRI and on the images used to position the patient at treatment. In prostate cancer radiotherapy, internal gold markers are commonly used, and they are visible on CT, MRI, x-ray, and portal images. The depiction of the markers in MRI are, however, dependent on their shape and orientation relative the main magnetic field because of susceptibility effects. In the present work, these effects are investigated and quantified using both simulations and phantom measurements. METHODS AND MATERIALS: Software that simulated the magnetic field distortions around user defined geometries of variable susceptibilities was constructed. These magnetic field perturbation maps were then reconstructed to images that were evaluated. The simulation software was validated through phantom measurements of four commercially available gold markers of different shapes and one in-house gold marker. RESULTS: Both simulations and phantom measurements revealed small position deviations of the imaged marker positions relative the actual marker positions (<1 mm). CONCLUSION: Cylindrical gold markers can be used as internal fiducial markers in MRI.


Assuntos
Marcadores Fiduciais , Ouro , Imageamento por Ressonância Magnética/métodos , Próstata/patologia , Neoplasias da Próstata/patologia , Planejamento da Radioterapia Assistida por Computador/métodos , Artefatos , Humanos , Campos Magnéticos , Masculino , Movimento , Posicionamento do Paciente , Imagens de Fantasmas , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Radioterapia Guiada por Imagem/métodos , Tomografia Computadorizada por Raios X/métodos
10.
Radiat Oncol ; 6: 73, 2011 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-21679394

RESUMO

BACKGROUND: In recent years, there has been a considerable research effort concerning the integration of magnetic resonance imaging (MRI) into the external radiotherapy workflow motivated by the superior soft tissue contrast as compared to computed tomography. Image registration is a necessary step in many applications, e.g. in patient positioning and therapy response assessment with repeated imaging. In this study, we investigate the dependence between the registration accuracy and the size of the registration volume for a subvolume based rigid registration protocol for MR images of the prostate. METHODS: Ten patients were imaged four times each over the course of radiotherapy treatment using a T2 weighted sequence. The images were registered to each other using a mean square distance metric and a step gradient optimizer for registration volumes of different sizes. The precision of the registrations was evaluated using the center of mass distance between the manually defined prostates in the registered images. The optimal size of the registration volume was determined by minimizing the standard deviation of these distances. RESULTS: We found that prostate position was most uncertain in the anterior-posterior (AP) direction using traditional full volume registration. The improvement in standard deviation of the mean center of mass distance between the prostate volumes using a registration volume optimized to the prostate was 3.9 mm (p < 0.001) in the AP direction. The optimum registration volume size was 0 mm margin added to the prostate gland as outlined in the first image series. CONCLUSIONS: Repeated MR imaging of the prostate for therapy set-up or therapy assessment will both require high precision tissue registration. With a subvolume based registration the prostate registration uncertainty can be reduced down to the order of 1 mm (1 SD) compared to several millimeters for registration based on the whole pelvis.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Próstata/patologia , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/patologia , Idoso , Automação , Diagnóstico por Imagem/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Planejamento da Radioterapia Assistida por Computador/métodos , Reprodutibilidade dos Testes
11.
Radiat Oncol ; 5: 62, 2010 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-20591179

RESUMO

BACKGROUND: Because of superior soft tissue contrast, the use of magnetic resonance imaging (MRI) as a complement to computed tomography (CT) in the target definition procedure for radiotherapy is increasing. To keep the workflow simple and cost effective and to reduce patient dose, it is natural to strive for a treatment planning procedure based entirely on MRI. In the present study, we investigate the dose calculation accuracy for different treatment regions when using bulk density assignments on MRI data and compare it to treatment planning that uses CT data. METHODS: MR and CT data were collected retrospectively for 40 patients with prostate, lung, head and neck, or brain cancers. Comparisons were made between calculations on CT data with and without inhomogeneity corrections and on MRI or CT data with bulk density assignments. The bulk densities were assigned using manual segmentation of tissue, bone, lung, and air cavities. RESULTS: The deviations between calculations on CT data with inhomogeneity correction and on bulk density assigned MR data were small. The maximum difference in the number of monitor units required to reach the prescribed dose was 1.6%. This result also includes effects of possible geometrical distortions. CONCLUSIONS: The dose calculation accuracy at the investigated treatment sites is not significantly compromised when using MRI data when adequate bulk density assignments are made. With respect to treatment planning, MRI can replace CT in all steps of the treatment workflow, reducing the radiation exposure to the patient, removing any systematic registration errors that may occur when combining MR and CT, and decreasing time and cost for the extra CT investigation.


Assuntos
Imageamento por Ressonância Magnética/métodos , Neoplasias/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dosagem Radioterapêutica , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...