Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 33(11): e17360, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38656687

RESUMO

Connectivity is a fundamental process of population dynamics in marine ecosystems. In the last decade, with the emergence of new methods, combining different approaches to understand the patterns of connectivity among populations and their regulation has become increasingly feasible. The Western Antarctic Peninsula (WAP) is characterized by complex oceanographic dynamics, where local conditions could act as barriers to population connectivity. Here, the notothenioid fish Harpagifer antarcticus, a demersal species with a complex life cycle (adults with poor swim capabilities and pelagic larvae), was used to assess connectivity along the WAP by combining biophysical modelling and population genomics methods. Both approaches showed congruent patterns. Areas of larvae retention and low potential connectivity, observed in the biophysical model output, coincide with four genetic groups within the WAP: (1) South Shetland Islands, (2) Bransfield Strait, (3) the central and (4) the southern area of WAP (Marguerite Bay). These genetic groups exhibited limited gene flow between them, consistent with local oceanographic conditions, which would represent barriers to larval dispersal. The joint effect of geographic distance and larval dispersal by ocean currents had a greater influence on the observed population structure than each variable evaluated separately. The combined effect of geographic distance and a complex oceanographic dynamic would be generating limited levels of population connectivity in the fish H. antarcticus along the WAP. Based on this, population connectivity estimations and priority areas for conservation were discussed, considering the marine protected area proposed for this threatened region of the Southern Ocean.


Assuntos
Fluxo Gênico , Genética Populacional , Animais , Regiões Antárticas , Dinâmica Populacional , Perciformes/genética , Genômica , Ecossistema , Larva/genética , Peixes/genética
2.
Evol Appl ; 16(2): 530-541, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36793681

RESUMO

The Centre for Marine Evolutionary Biology (CeMEB) at the University of Gothenburg, Sweden, was established in 2008 through a 10-year research grant of 8.7 m€ to a team of senior researchers. Today, CeMEB members have contributed >500 scientific publications, 30 PhD theses and have organised 75 meetings and courses, including 18 three-day meetings and four conferences. What are the footprints of CeMEB, and how will the centre continue to play a national and international role as an important node of marine evolutionary research? In this perspective article, we first look back over the 10 years of CeMEB activities and briefly survey some of the many achievements of CeMEB. We furthermore compare the initial goals, as formulated in the grant application, with what has been achieved, and discuss challenges and milestones along the way. Finally, we bring forward some general lessons that can be learnt from a research funding of this type, and we also look ahead, discussing how CeMEB's achievements and lessons can be used as a springboard to the future of marine evolutionary biology.

3.
Glob Chang Biol ; 28(17): 5310-5319, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35733273

RESUMO

Climate change influences the ocean's physical and biogeochemical conditions, causing additional pressures on marine environments and ecosystems, now and in the future. Such changes occur in environments that already today suffer under pressures from, for example, eutrophication, pollution, shipping, and more. We demonstrate how to implement climate change into regional marine spatial planning by introducing data of future temperature, salinity, and sea ice cover from regional ocean climate model projections to an existing cumulative impact model. This makes it possible to assess climate change impact in relation to pre-existing cumulative impact from current human activities. Results indicate that end-of-century projected climate change alone is a threat of the same magnitude as the combination of all current pressures to the marine environment. These findings give marine planners and policymakers forewarning on how future climate change may impact marine ecosystems, across space, emission scenarios, and in relation to other pressures.


Assuntos
Mudança Climática , Ecossistema , Eutrofização , Humanos , Oceanos e Mares , Salinidade , Temperatura
4.
Philos Trans R Soc Lond B Biol Sci ; 377(1846): 20210024, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35067094

RESUMO

Dispersal is generally difficult to directly observe. Instead, dispersal is often inferred from genetic markers and biophysical modelling where a correspondence indicates that dispersal routes and barriers explain a significant part of population genetic differentiation. Biophysical models are used for wind-driven dispersal in terrestrial environments and for propagules drifting with ocean currents in the sea. In the ocean, such seascape genetic or seascape genomic studies provide promising tools in applied sciences, as actions within management and conservation rely on an understanding of population structure, genetic diversity and presence of local adaptations, all dependent on dispersal within the metapopulation. Here, we surveyed 87 studies that combine population genetics and biophysical models of dispersal. Our aim was to understand if biophysical dispersal models can generally explain genetic differentiation. Our analysis shows that genetic differentiation and lack of genetic differentiation can often be explained by dispersal, but the realism of the biophysical model, as well as local geomorphology and species biology also play a role. The review supports the use of a combination of both methods, and we discuss our findings in terms of recommendations for future studies and pinpoint areas where further development is necessary, particularly on how to compare both approaches. This article is part of the theme issue 'Species' ranges in the face of changing environments (part I)'.


Assuntos
Genética Populacional , Genômica , Adaptação Fisiológica , Marcadores Genéticos , Variação Genética , Modelos Genéticos
5.
Mol Ecol ; 31(7): 1980-1994, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35080070

RESUMO

Most marine invertebrates disperse during a planktonic larval stage that may drift for weeks with ocean currents. A challenge for larvae of coastal species is to return to coastal nursery habitats. Shore crab (Carcinus maenas L.) larvae are known to show tidal rhythmicity in vertical migration in tidal areas and circadian rhythmicity in microtidal areas, which seems to increase successful coastal settlement. We studied genome-wide differentiation based on 24,000 single nucleotide polymorphisms of 12 native populations of shore crab sampled from a large tidal amplitude gradient from macrotidal (~8 m) to microtidal (~0.2 m). Dispersal and recruitment success of larvae was assessed with a Lagrangian biophysical model, which showed a strong effect of larval behaviour on long-term connectivity, and dispersal barriers that partly coincided with different tidal environments. The genetic population structure showed a subdivision of the samples into three clusters, which represent micro-, meso- and macrotidal areas. The genetic differentiation was mostly driven by 0.5% outlier loci, which showed strong allelic clines located at the limits between the three tidal areas. Demographic modelling suggested that the two genetic barriers have different origins. Differential gene expression of two clock genes (cyc and pdp1) further highlighted phenotypic differences among genetic clusters that are potentially linked to the differences in larval behaviour. Taken together, our seascape genomic study suggests that tidal regime acts as a strong selection force on shore crab population structure, consistent with larval behaviour affecting dispersal and recruitment success.


Assuntos
Braquiúros , Animais , Braquiúros/genética , Ecossistema , Genética Populacional , Genômica , Larva/genética
6.
J Environ Manage ; 264: 110447, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32364954

RESUMO

Over two million leisure boats use the coastal areas of the Baltic Sea for recreational purposes. The majority of these boats are painted with toxic antifouling paints that release biocides into the coastal ecosystems and negatively impact non-targeted species. Regulations concerning the use of antifouling paints differ dramatically between countries bordering the Baltic Sea and most of them lack the support of biological data. In the present study, we collected data on biofouling in 17 marinas along the Baltic Sea coast during three consecutive boating seasons (May-October 2014, 2015 and 2016). In this context, we compared different monitoring strategies and developed a fouling index (FI) to characterise marinas according to the recorded biofouling abundance and type (defined according to the hardness and strength of attachment to the substrate). Lower FI values, i.e. softer and/or less abundant biofouling, were consistently observed in marinas in the northern Baltic Sea. The decrease in FI from the south-western to the northern Baltic Sea was partially explained by the concomitant decrease in salinity. Nevertheless, most of the observed changes in biofouling seemed to be determined by local factors and inter-annual variability, which emphasizes the necessity for systematic monitoring of biofouling by end-users and/or authorities for the effective implementation of non-toxic antifouling alternatives in marinas. Based on the obtained results, we discuss how monitoring programs and other related measures can be used to support adaptive management strategies towards more sustainable antifouling practices in the Baltic Sea.


Assuntos
Incrustação Biológica , Desinfetantes , Ecossistema , Pintura , Navios
7.
Evol Appl ; 13(5): 974-990, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32431747

RESUMO

Incorporating species' eco-evolutionary responses to human-caused disturbances remains a challenge in marine management efforts. A prerequisite is knowledge of geographic structure and scale of genetic diversity and connectivity-the so-called seascape genetic patterns. The Baltic Sea is an excellent model system for studies linking seascape genetics with effects of anthropogenic stress. However, seascape genetic patterns in this area are only described for a few species and are completely unknown for invertebrate herbivores, which constitute a critical part of the ecosystem. This information is crucial for sustainable management, particularly under future scenarios of rapid environmental change. Here, we investigate the population genetic structure among 31 locations throughout the Baltic Sea, of which 45% were located in marine protected areas, in one of the most important herbivores of this region, the isopod crustacean Idotea balthica, using an array of 33,774 genome-wide SNP markers derived from 2b-RAD sequencing. In addition, we generate a biophysical connectivity matrix for I. balthica from a combination of oceanographic current models and estimated life history traits. We find population structure on scales of hundreds of kilometers across the Baltic Sea, where genomic patterns in most cases closely match biophysical connectivity, indicating passive transport with oceanographic currents as an important mean of dispersal in this species. We also find a reduced genetic diversity in terms of heterozygosity along the main salinity gradient of the Baltic Sea, suggesting periods of low population size. Our results provide crucial information for the management of a key ecosystem species under expected changes in temperature and salinity following global climate change in a marine coastal area.

9.
Ecol Appl ; 30(6): e02121, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32159897

RESUMO

The eelgrass Zostera marina is an important foundation species of coastal areas in the Northern Hemisphere, but is continuing to decline, despite management actions. The development of new management tools is therefore urgent in order to prioritize limited resources for protecting meadows most vulnerable to local extinctions and identifying most valuable present and historic meadows to protect and restore, respectively. We assessed 377 eelgrass meadows along the complex coastlines of two fjord regions on the Swedish west coast-one is currently healthy and the other is substantially degraded. Shoot dispersal for all meadows was assessed with Lagrangian biophysical modeling (scale: 100-1,000 m) and used for barrier analysis and clustering; a subset (n = 22) was also assessed with population genetic methods (20 microsatellites) including diversity, structure, and network connectivity. Both approaches were in very good agreement, resulting in seven subpopulation groupings or management units (MUs). The MUs correspond to a spatial scale appropriate for coastal management of "waterbodies" used in the European Water Framework Directive. Adding demographic modeling based on the genetic and biophysical data as a third approach, we are able to assess past, present, and future metapopulation dynamics to identify especially vulnerable and valuable meadows. In a further application, we show how the biophysical approach, using eigenvalue perturbation theory (EPT) and distribution records from the 1980s, can be used to identify lost meadows where restoration would best benefit the present metapopulation. The combination of methods, presented here as a toolbox, allows the assessment of different temporal and spatial scales at the same time, as well as ranking of specific meadows according to key genetic, demographic and ecological metrics. It could be applied to any species or region, and we exemplify its versatility as a management guide for eelgrass along the Swedish west coast.


Assuntos
Ecossistema , Zosteraceae , Demografia , Repetições de Microssatélites , Suécia , Zosteraceae/genética
10.
Sci Total Environ ; 709: 136144, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-31905569

RESUMO

Eutrophication is a serious threat to aquatic ecosystems globally with pronounced negative effects in the Baltic and other semi-enclosed estuaries and regional seas, where algal growth associated with excess nutrients causes widespread oxygen free "dead zones" and other threats to sustainability. Decades of policy initiatives to reduce external (land-based and atmospheric) nutrient loads have so far failed to control Baltic Sea eutrophication, which is compounded by significant internal release of legacy phosphorus (P) and biological nitrogen (N) fixation. Farming and harvesting of the native mussel species (Mytilus edulis/trossulus) is a promising internal measure for eutrophication control in the brackish Baltic Sea. Mussels from the more saline outer Baltic had higher N and P content than those from either the inner or central Baltic. Despite their relatively low nutrient content, harvesting farmed mussels from the central Baltic can be a cost-effective complement to land-based measures needed to reach eutrophication status targets and is an important contributor to circularity. Cost effectiveness of nutrient removal is more dependent on farm type than mussel nutrient content, suggesting the need for additional development of farm technology. Furthermore, current regulations are not sufficiently conducive to implementation of internal measures, and may constitute a bottleneck for reaching eutrophication status targets in the Baltic Sea and elsewhere.


Assuntos
Bivalves , Agricultura , Animais , Países Bálticos , Eutrofização , Nitrogênio , Oceanos e Mares , Fósforo
11.
Front Physiol ; 10: 877, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31496949

RESUMO

Barnacles form a globally ubiquitous group of sessile crustaceans that are particularly common in the coastal intertidal. Several barnacle species are described as highly euryhaline and a few species even have the ability to colonize estuarine and brackish habitats below 5 PSU. However, the physiological and/or morphological adaptations that allow barnacles to live at low salinities are poorly understood and current knowledge is largely based on classical eco-physiological studies offering limited insight into the molecular mechanisms. This review provides an overview of available knowledge of salinity tolerance in barnacles and what is currently known about their osmoregulatory strategies. To stimulate future studies on barnacle euryhalinity, we briefly review and compare barnacles to other marine invertebrates with known mechanisms of osmoregulation with focus on crustaceans. Different mechanisms are described based on the current understanding of molecular biology and integrative physiology of osmoregulation. We focus on ion and water transport across epithelial cell layers, including transport mechanisms across cell membranes and paracellular transfer across tight junctions as well as on the use of intra- and extracellular osmolytes. Based on this current knowledge, we discuss the osmoregulatory mechanisms possibly present in barnacles. We further discuss evolutionary consequences of barnacle osmoregulation including invasion-success in new habitats and life-history evolution. Tolerance to low salinities may play a crucial role in determining future distributions of barnacles since forthcoming climate-change scenarios predict decreased salinity in shallow coastal areas. Finally, we outline future research directions to identify osmoregulatory tissues, characterize physiological and molecular mechanisms, and explore ecological and evolutionary implications of osmoregulation in barnacles.

12.
BMC Ecol ; 19(1): 22, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31164112

RESUMO

BACKGROUND: In the brackish Baltic Sea, shedding of adventitious branches is central to asexual recruitment of new thalli in the brown algae Fucus vesiculosus and F. radicans. To test which factors influence the formation of adventitious branches in brackish and in more marine conditions, we sampled 29 Fucus sites in the Baltic Sea (salinity 3-11) and 18 sites from the Danish straits, Kattegat, Skagerrak, and the North Sea (salinity 15-35). Separately for each area, we used structural equation modelling to determine which of eight predictor factors (phosphate, nitrate, chlorophyll-a (as a proxy for turbidity), temperature, salinity, oxygen, grazing pressure, and thallus area) best explained observed numbers of adventitious branches. RESULTS: In more marine waters, high yearly average values of phosphate, salinity and turbidity had positive effects on the formation of adventitious branches. In brackish-waters, however, high numbers of adventitious branches were found in areas with low yearly average values of temperature, salinity and oxygen. Grazing intensity had no significant effect in either of the two study areas, contrasting findings from studies in other areas. In areas with both sexually and asexually reproducing Fucus individuals, clones had on average more adventitious branches than unique genotypes, although there was strong variation among clonal lineages. CONCLUSION: This study is the first to investigate multiple potential drivers of formation of adventitious branches in natural populations of Fucus. Our results suggest that several different factors synergistically and antagonistically affect the growth of adventitious branches in a complex way, and that the same factor (salinity) can have opposing effects in different areas.


Assuntos
Fucus , Alga Marinha , Genótipo , Salinidade
13.
Sci Rep ; 9(1): 1821, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755688

RESUMO

Predictive species distribution models are mostly based on statistical dependence between environmental and distributional data and therefore may fail to account for physiological limits and biological interactions that are fundamental when modelling species distributions under future climate conditions. Here, we developed a state-of-the-art method integrating biological theory with survey and experimental data in a way that allows us to explicitly model both physical tolerance limits of species and inherent natural variability in regional conditions and thereby improve the reliability of species distribution predictions under future climate conditions. By using a macroalga-herbivore association (Fucus vesiculosus - Idotea balthica) as a case study, we illustrated how salinity reduction and temperature increase under future climate conditions may significantly reduce the occurrence and biomass of these important coastal species. Moreover, we showed that the reduction of herbivore occurrence is linked to reduction of their host macroalgae. Spatial predictive modelling and experimental biology have been traditionally seen as separate fields but stronger interlinkages between these disciplines can improve species distribution projections under climate change. Experiments enable qualitative prior knowledge to be defined and identify cause-effect relationships, and thereby better foresee alterations in ecosystem structure and functioning under future climate conditions that are not necessarily seen in projections based on non-causal statistical relationships alone.


Assuntos
Herbivoria/fisiologia , Alga Marinha/fisiologia , Animais , Mudança Climática , Ecossistema , Fucus/fisiologia
14.
J Vis Exp ; (138)2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30148484

RESUMO

Barnacles are marine crustaceans with a sessile adult and free-swimming, planktonic larvae. The barnacle Balanus (Amphibalanus) improvisus is particularly relevant as a model for the studies of osmoregulatory mechanisms because of its extreme tolerance to low salinity. It is also widely used as a model of settling biology, in particular in relation to antifouling research. However, natural seasonal spawning yields an unpredictable supply of cyprid larvae for studies. A protocol for the all-year-round culturing of B. improvisus has been developed and a detailed description of all steps in the production line is outlined (i.e., the establishment of adult cultures on panels, the collection and rearing of barnacle larvae, and the administration of feed for adults and larvae). The description also provides guidance on troubleshooting and discusses critical parameters (e.g., the removal of contamination, the production of high-quality feed, the manpower needed, and the importance of high-quality seawater). Each batch from the culturing system maximally yields roughly 12,000 nauplii and can deliver four batches in a week, so up to almost 50,000 larvae per week can be produced. The method used to culture B. improvisus is, probably, to a large extent also applicable to other marine invertebrates with free-swimminglarvae. Protocols are presented for the dissection of various tissues from adults as well as the production of high-quality RNA for studies on gene expression. It is also described how cultured adults and reared cyprids can be utilized in a wide array of experimental designs for examining gene expression in relation to external factors. The use of cultured barnacles in gene expression is illustrated with studies of possible osmoregulatory roles of Na+/K+ ATPase and aquaporins.


Assuntos
Expressão Gênica/genética , Larva/química , Thoracica/química , Animais , Modelos Animais
15.
Mar Biol ; 165(8): 126, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30100627

RESUMO

Pelagic larval development has the potential to connect populations over large geographic distances and prevent genetic structuring. The solitary tunicate Ciona intestinalis has pelagic eggs and a swimming larval stage lasting for maximum a few days, with the potential for a homogenizing gene flow over relatively large areas. In the eastern North Sea, it is found in a geomorphologically complex archipelago with a mix of fjords and open costal habitats. Here, the coastal waters are also stratified with a marked pycnocline driven by salinity and temperature differences between shallow and deep waters. We investigated the genetic structure of C. intestinalis in this area and compared it with oceanographic barriers to dispersal that would potentially reduce connectivity among local populations. Genetic data from 240 individuals, sampled in 2 shallow, and 4 deep-water sites, showed varying degrees of differentiation among samples (FST = 0.0-0.11). We found no evidence for genetic isolation by distance, but two distant deep-water sites from the open coast were genetically very similar indicating a potential for long-distance gene flow. However, samples from different depths from the same areas were clearly differentiated, and fjord samples were different from open-coast sites. A biophysical model estimating multi-generation, stepping-stone larval connectivity, and empirical data on fjord water mass retention time showed the presence of oceanographic barriers that explained the genetic structure observed. We conclude that the local pattern of oceanographic connectivity will impact on the genetic structure of C. intestinalis in this region.

16.
ISME J ; 12(12): 2929-2941, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30068937

RESUMO

Understanding the genetic structure of populations is key to revealing past and present demographic and evolutionary processes in a species. In the past decade high genetic differentiation has been observed in many microbial species challenging the previous view of cosmopolitan distribution. Populations have displayed high genetic differentiation, even at small spatial scales, despite apparent high dispersal. Numerous species of microalgae have a life-history strategy that includes a long-term resting stage, which can accumulate in sediments and serve as refuge during adverse conditions. It is presently unclear how these seed banks affect the genetic structure of populations in aquatic environments. Here we provide a conceptual framework, using a simple model, to show that long-term resting stages have an anchoring effect on populations leading to increased genetic diversity and population differentiation in the presence of gene flow. The outcome that species with resting stages have a higher degree of genetic differentiation compared to species without, is supported by empirical data obtained from a systematic literature review. With this work we propose that seed banks in aquatic microalgae play an important role in the contradicting patterns of gene flow, and ultimately the adaptive potential and population dynamics in species with long-term resting stages.


Assuntos
Fluxo Gênico , Genética Populacional , Microalgas/genética , Modelos Biológicos , Evolução Biológica , Simulação por Computador , Deriva Genética , Dormência de Plantas , Dinâmica Populacional , Reprodução/genética , Banco de Sementes , Sementes/genética
17.
Evol Appl ; 11(5): 645-661, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29875808

RESUMO

Maintaining and enabling evolutionary processes within meta-populations are critical to resistance, resilience and adaptive potential. Knowledge about which populations act as sources or sinks, and the direction of gene flow, can help to focus conservation efforts more effectively and forecast how populations might respond to future anthropogenic and environmental pressures. As a foundation species and habitat provider, Zostera marina (eelgrass) is of critical importance to ecosystem functions including fisheries. Here, we estimate connectivity of Z. marina in the Skagerrak-Kattegat region of the North Sea based on genetic and biophysical modelling. Genetic diversity, population structure and migration were analysed at 23 locations using 20 microsatellite loci and a suite of analytical approaches. Oceanographic connectivity was analysed using Lagrangian dispersal simulations based on contemporary and historical distribution data dating back to the late 19th century. Population clusters, barriers and networks of connectivity were found to be very similar based on either genetic or oceanographic analyses. A single-generation model of dispersal was not realistic, whereas multigeneration models that integrate stepping-stone dispersal and extant and historic distribution data were able to capture and model genetic connectivity patterns well. Passive rafting of flowering shoots along oceanographic currents is the main driver of gene flow at this spatial-temporal scale, and extant genetic connectivity strongly reflects the "ghost of dispersal past" sensu Benzie, 1999. The identification of distinct clusters, connectivity hotspots and areas where connectivity has become limited over the last century is critical information for spatial management, conservation and restoration of eelgrass.

18.
Environ Microbiol ; 20(8): 2783-2795, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29614214

RESUMO

Marine planktonic microalgae have potentially global dispersal, yet reduced gene flow has been confirmed repeatedly for several species. Over larger distances (>200 km) geographic isolation and restricted oceanographic connectivity have been recognized as instrumental in driving population divergence. Here we investigated whether similar patterns, that is, structured populations governed by geographic isolation and/or oceanographic connectivity, can be observed at smaller (6-152 km) geographic scales. To test this we established 425 clonal cultures of the planktonic diatom Skeletonema marinoi collected from 11 locations in the Archipelago Sea (northern Baltic Sea). The region is characterized by a complex topography, entailing several mixing regions of which four were included in the sampling area. Using eight microsatellite markers and conventional F-statistics, significant genetic differentiation was observed between several sites. Moreover, Bayesian cluster analysis revealed the co-occurrence of two genetic groups spread throughout the area. However, geographic isolation and oceanographic connectivity could not explain the genetic patterns observed. Our data reveal hierarchical genetic structuring whereby despite high dispersal potential, significantly diverged populations have developed over small spatial scales. Our results suggest that biological characteristics and historical events may be more important in generating barriers to gene flow than physical barriers at small spatial scales.


Assuntos
Diatomáceas/genética , Plâncton/genética , Teorema de Bayes , Fluxo Gênico , Repetições de Microssatélites , Oceanos e Mares
19.
PLoS One ; 12(10): e0186901, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29059225

RESUMO

The periwinkle Littorina saxatilis has repeatedly evolved both a small, fragile and globose "wave ecotype" confined to wave-swept shores and a large, robust and elongated "crab ecotype" found in nearby crab-rich but less-exposed shores. This phenotypic divergence is assumed to reflect, in some part, local adaptation to wave exposure, but this hypothesis has received incomplete experimental testing. Here, we report a test of the prediction that the wave ecotype has a higher capacity to resist water flow than the crab ecotype. We sampled snails along a crab-wave transect and measured their resistance to dislodgement in a high-speed water flume with water speeds that match those of breaking waves in a range of relevant field conditions. Snails from the wave environment were consistently more resistant to water flow than snails from the crab environment and high resistance was positively correlated with the surface area of the foot and the area of the outer aperture contour both relative to shell size, and to the extent of lateral shell compression. In a separate experiment, we found that snails raised in still water in a common garden showed higher resistance to water flow if originating from a wave environment than from a crab environment, and this was true both at juvenile (2 weeks) and adult (10 months) developmental stages. This result suggests genetic control of a distinct "wave adapted" phenotype, likely to be maintained under strong divergent selection between the two adjacent habitats.


Assuntos
Adaptação Fisiológica , Ecossistema , Caramujos/fisiologia , Animais
20.
Biofouling ; 33(8): 613-623, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28792237

RESUMO

Current antifouling (AF) technologies are based on the continuous release of biocides into the water, and consequently discharge into the environment. Major efforts to develop more environmentally friendly coatings require efficient testing in laboratory assays, followed by field studies. Barnacles are important fouling organisms worldwide, increasing hydrodynamic drag on ships and damaging coatings on underwater surfaces, and thus are extensively used as models in AF research, mostly in static, laboratory-based systems. Reliable flow-through test assays for the screening of biocide-containing AF paints, however, are rare. Herein, a flow-through bioassay was developed to screen for diverse low-release biocide paints, and to evaluate their effects on pre- and post-settlement traits in barnacles. The assay distinguishes between the effects from direct surface contact and bulk-water effects, which are crucial when developing low-emission AF coatings. This flow-through bioassay adds a new tool for rapid laboratory-based first-stage screening of candidate compounds and novel AF formulations.


Assuntos
Incrustação Biológica/prevenção & controle , Bioensaio/métodos , Desinfetantes/farmacologia , Hidrodinâmica , Thoracica/efeitos dos fármacos , Animais , Bioensaio/instrumentação , Desinfetantes/química , Desenho de Equipamento , Pintura , Navios , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...