Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 450(1): 634-40, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24937447

RESUMO

The RNase D-type 3'-5' exonuclease Rrp6p from Saccharomyces cerevisiae is a nuclear-specific cofactor of the RNA exosome and associates in vivo with Rrp47p (Lrp1p). Here, we show using biochemistry and small-angle X-ray scattering (SAXS) that Rrp6p and Rrp47p associate into a stable, heterodimeric complex with an elongated shape consistent with binding of Rrp47p to the nuclease domain and opposite of the HRDC domain of Rrp6p. Rrp47p reduces the exonucleolytic activity of Rrp6p on both single-stranded and structured RNA substrates without significantly altering the affinity towards RNA or the ability of Rrp6p to degrade RNA secondary structure.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/ultraestrutura , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestrutura , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/ultraestrutura , RNA/metabolismo , RNA/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Sequência de Aminoácidos , Sítios de Ligação , Simulação por Computador , Proteínas de Ligação a DNA/química , Complexo Multienzimático de Ribonucleases do Exossomo/química , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/química , Ligação Proteica , Conformação Proteica , RNA/química , Proteínas de Ligação a RNA/química , Proteínas de Saccharomyces cerevisiae/química , Espalhamento a Baixo Ângulo , Difração de Raios X
2.
Sensors (Basel) ; 13(5): 5937-44, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23666126

RESUMO

Temperature is of major importance in most branches of science and technology as well as in everyday life, and with the miniaturization of electronic devices and the increasing ability to make research into small-scale systems, a specific need for very small thermostats and thermometers has been created. Here we describe how DNA molecules can be used as nanoscale sensors to meet these requirements. We illustrate how the hybridization kinetics between bases in DNA molecules combined with conformational changes of the DNA backbone can be exploited in the construction of simple but versatile temperature switches and thermometers, which can be built into electronic systems. DNA based sensors are at the same time applicable as ion detectors to monitor the chemical environment of a specific system.


Assuntos
DNA/química , Conformação de Ácido Nucleico , Temperatura , Termômetros , Sequência de Bases , Soluções Tampão , Corantes , Fluorescência , Íons , Dados de Sequência Molecular , Desnaturação de Ácido Nucleico/efeitos dos fármacos , Cloreto de Sódio/farmacologia
3.
RNA ; 15(5): 850-61, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19307292

RESUMO

In eukaryotic organisms, initiation of mRNA turnover is controlled by progressive shortening of the poly-A tail, a process involving the mega-Dalton Ccr4-Not complex and its two associated 3'-5' exonucleases, Ccr4p and Pop2p (Caf1p). RNA degradation by the 3'-5' DEDDh exonuclease, Pop2p, is governed by the classical two metal ion mechanism traditionally assumed to be dependent on Mg(2+) ions bound in the active site. Here, we show biochemically and structurally that fission yeast (Schizosaccharomyces pombe) Pop2p prefers Mn(2+) and Zn(2+) over Mg(2+) at the concentrations of the ions found inside cells and that the identity of the ions in the active site affects the activity of the enzyme. Ion replacement experiments further suggest that mRNA deadenylation could be subtly regulated by local Zn(2+) levels in the cell. Finally, we use site-directed mutagenesis to propose a mechanistic model for the basis of the preference for poly-A sequences exhibited by the Pop2p-type deadenylases as well as their distributive enzymatic behavior.


Assuntos
Manganês/metabolismo , Ribonucleases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Zinco/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Poli A/metabolismo , Ribonucleases/química , Ribonucleases/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Alinhamento de Sequência
4.
Nucleic Acids Res ; 36(19): 6165-74, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18824478

RESUMO

Although centromere function has been conserved through evolution, apparently no interspecies consensus DNA sequence exists. Instead, centromere DNA may be interconnected through the formation of certain DNA structures creating topological binding sites for centromeric proteins. DNA topoisomerase II is a protein, which is located at centromeres, and enzymatic topoisomerase II activity correlates with centromere activity in human cells. It is therefore possible that topoisomerase II recognizes and interacts with the alpha satellite DNA of human centromeres through an interaction with potential DNA structures formed solely at active centromeres. In the present study, human topoisomerase IIalpha-mediated cleavage at centromeric DNA sequences was examined in vitro. The investigation has revealed that the enzyme recognizes and cleaves a specific hairpin structure formed by alpha satellite DNA. The topoisomerase introduces a single-stranded break at the hairpin loop in a reaction, where DNA ligation is partly uncoupled from the cleavage reaction. A mutational analysis has revealed, which features of the hairpin are required for topoisomerease IIalpha-mediated cleavage. Based on this a model is discussed, where topoisomerase II interacts with two hairpins as a mediator of centromere cohesion.


Assuntos
Antígenos de Neoplasias/metabolismo , Centrômero/química , DNA Topoisomerases Tipo II/metabolismo , DNA Satélite/química , Proteínas de Ligação a DNA/metabolismo , Sequência de Bases , DNA Satélite/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Teniposídeo/farmacologia , Inibidores da Topoisomerase II
5.
Nucleic Acids Res ; 35(9): 3153-64, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17452359

RESUMO

Deadenylation is the first and probably also rate-limiting step of controlled mRNA decay in eukaryotes and therefore central for the overall rate of gene expression. In yeast, the process is maintained by the mega-Dalton Ccr4-Not complex, of which both the Ccr4p and Pop2p subunits are 3'-5' exonucleases potentially responsible for the deadenylation reaction. Here, we present the crystal structure of the Pop2p subunit from Schizosaccharomyces pombe determined to 1.4 A resolution and show that the enzyme is a competent ribonuclease with a tunable specificity towards poly-A. In contrast to S. cerevisiae Pop2p, the S. pombe enzyme contains a fully conserved DEDDh active site, and the high resolution allows for a detailed analysis of its configuration, including divalent metal ion binding. Functional data further indicates that the identity of the ions in the active site can modulate both activity and specificity of the enzyme, and finally structural superposition of single nucleotides and poly-A oligonucleotides provide insight into the catalytic cycle of the protein.


Assuntos
Exorribonucleases/química , Modelos Moleculares , Ribonucleases/química , Proteínas de Schizosaccharomyces pombe/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Exorribonucleases/metabolismo , Metais/química , Dados de Sequência Molecular , Poli A/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , RNA/química , RNA/metabolismo , Ribonucleases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Homologia Estrutural de Proteína , Especificidade por Substrato
6.
Proc Natl Acad Sci U S A ; 103(32): 11898-903, 2006 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-16882719

RESUMO

The multisubunit eukaryotic exosome is an essential RNA processing and degradation machine. In its nuclear form, the exosome associates with the auxiliary factor Rrp6p, which participates in both RNA processing and degradation reactions. The crystal structure of Saccharomyces cerevisiae Rrp6p displays a conserved RNase D core with a flanking HRDC (helicase and RNase D C-terminal) domain in an unusual conformation shown to be important for the processing function of the enzyme. Complexes with AMP and UMP, the products of the RNA degradation process, reveal how the protein specifically recognizes ribonucleotides and their bases. Finally, in vivo mutational studies show the importance of the domain contacts for the processing function of Rrp6p and highlight fundamental differences between the protein and its prokaryotic RNase D counterparts.


Assuntos
Exorribonucleases/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Análise Mutacional de DNA , Exorribonucleases/fisiologia , Complexo Multienzimático de Ribonucleases do Exossomo , Magnésio/química , Modelos Moleculares , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , RNA/química , Ribonuclease III/química , Ribonucleotídeos/química , Proteínas de Saccharomyces cerevisiae/fisiologia , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...