Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Acad Nutr Diet ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38763462

RESUMO

BACKGROUND: Although resting metabolic rate (RMR) is crucial for understanding athletes' energy requirements, limited information is available on the RMR of Paralympic athletes. OBJECTIVE: The aim of this study was to determine RMR and its predictors in a diverse cohort of Paralympic athletes and evaluate the agreement between measured and predicted RMR from both newly developed and pre-existing equations. DESIGN: This cross-sectional study, conducted between September 2020 and September 2022 in the Netherlands and Norway, assessed RMR in Paralympic athletes by means of ventilated hood indirect calorimetry and body composition by means of dual-energy x-ray absorptiometry. PARTICIPANTS: Sixty-seven Paralympic athletes (male: n = 37; female: n = 30) competing in various sports, with a spinal cord disorder (n = 22), neurologic condition (n = 8), limb deficiency (n = 18), visual or hearing impairment (n = 7), or other disability (n = 12) participated. MAIN OUTCOME MEASURES: RMR, fat-free mass (FFM), body mass, and triiodothyronine (T3) concentrations were assessed. STATISTICAL ANALYSES: Multiple regression analyses were conducted with height, FFM, body mass, sex, T3 concentration, and disabilities as potential predictors of RMR. Differences between measured and predicted RMRs were analyzed for individual accuracy, root mean square error, and intraclass correlation. RESULTS: Mean ± SD RMR was 1386 ± 258 kcal/d for females and 1686 ± 302 kcal/d for males. Regression analysis identified FFM, T3 concentrations, and the presence of a spinal cord disorder, as the main predictors of RMR (adjusted R2 = 0.71; F = 50.3; P < .001). The novel prediction equations based on these data, as well as pre-existing equations of Chun and colleagues and Nightingale and Gorgey performed well on accuracy (>60% of participants within 10% of measured RMR), had good reliability (intraclass correlation >0.78), and low root mean square error (≤141 kcal). CONCLUSIONS: FFM, total T3 concentrations, and presence of spinal cord disorder are the main predictors of RMR in Paralympic athletes. Both the current study's prediction equations and those from Chun and colleagues and Nightingale and Gorgey align well with measured RMR, offering accurate prediction equations for the RMR of Paralympic athletes.

2.
Bone Rep ; 21: 101767, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38694186

RESUMO

Background: Bone health may be a concern in Paralympic athletes, given the presence of multiple risk factors predisposing these athletes to low bone mineral density (BMD). Objective: We aimed to assess the prevalence of low BMD among Paralympic athletes participating in various sport disciplines, and to identify potential risk factors for low BMD. Methods: Seventy Paralympic athletes, of whom 51 % were wheelchair-dependent, were included in this cross-sectional study. BMD of the whole-body, lumbar spine, total hip, and femoral neck were assessed by dual-energy x-ray absorptiometry. Comparisons between groups were conducted by one-way ANOVA, and regression analyses were conducted to identify potential risk factors for low BMD. Results: The prevalence of low BMD (Z-score < -1.0) was highest at femoral neck (34 %), followed by total hip (31 %), whole-body (21 %), and lumbar spine (18 %). Wheelchair-dependent athletes had significantly lower BMD Z-scores compared to the non-wheelchair-dependent athletes at whole-body level (-0.5 ± 1.4 vs 0.2 ± 1.3; P = 0.04), total hip (-1.1 ± 1.2 vs 0.0 ± 1.1; P < 0.01), and femoral neck (-1.0 ± 1.3 vs -0.1 ± 1.2; P < 0.01). At the lumbar spine, low BMD was completely absent in wheelchair basketball and tennis players. Regression analyses identified body mass, wheelchair dependence, and type of sport, as the main risk factors for low BMD. Conclusions: In this cohort of Paralympic athletes, low BMD is mainly present at the hip, and to a lesser extent at the whole-body and lumbar spine. The most prominent risk factors for low BMD in Paralympic athletes are related to mechanical loading patterns, including wheelchair use, the type of sport, and body mass.

3.
Med Sci Sports Exerc ; 56(5): 963-971, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38194704

RESUMO

PURPOSE: Advanced insight in energy requirements of Paralympic athletes is imperative for optimizing their nutritional counseling. Given the lack of accurate data on total daily energy expenditure (TDEE) of Paralympic athletes, this study aimed to assess energy expenditure and nutritional intake of a large cohort of Paralympic athletes, across different sports and disabilities. METHODS: In this cross-sectional study, 48 Dutch and Norwegian Paralympic athletes (19 male/29 female) with various disabilities, competing in Para cycling, wheelchair tennis, wheelchair basketball, Para Nordic skiing, and alpine skiing participated. TDEE was assessed by the gold standard doubly labeled water method over a 14-d period, resting metabolic rate by ventilated hood indirect calorimetry, energy intake by three unannounced 24-h dietary recalls, body composition by dual-energy x-ray absorptiometry, and exercise training duration by a training log. RESULTS: Mean TDEE was 2908 ± 797 kcal·d -1 , ranging from 2322 ± 340 kcal·d -1 for wheelchair basketball players to 3607 ± 1001 kcal·d -1 for Para cyclists. Regression analysis identified fat-free mass, exercise duration, and the presence of a spinal cord disorder as the primary predictors of TDEE, explaining up to 73% of the variance in TDEE. Athletes' energy intake (2363 ± 905 kcal·d -1 ) was below their TDEE, whereas their body mass remained constant, indicating underreporting. Carbohydrate intake (4.1 ± 1.9 g·kg -1 body mass) was low, even when considering underreporting, whereas protein intake (1.8 ± 0.6 g·kg -1 body mass) was relatively high. CONCLUSIONS: Paralympic athletes display moderate- to high-energy expenditure, varying across sports and individuals. Much of the variation in TDEE can be attributed to individual differences in fat-free mass and exercise duration. This study establishes the benchmarks for energy requirements of Paralympic athletes, serving as the foundation for future dietary guidelines within this population.


Assuntos
Basquetebol , Paratletas , Humanos , Masculino , Feminino , Água , Estudos Transversais , Metabolismo Energético , Ingestão de Energia , Atletas , Composição Corporal
4.
Sports Med ; 52(10): 2537-2558, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35604567

RESUMO

INTRODUCTION: Dietary inorganic nitrate is a popular nutritional supplement, which increases nitric oxide bioavailability and may improve exercise performance. Despite over a decade of research into the effects of dietary nitrate supplementation during exercise there is currently no expert consensus on how, when and for whom this compound could be recommended as an ergogenic aid. Moreover, there is no consensus on the safe administration of dietary nitrate as an ergogenic aid. This study aimed to address these research gaps. METHODS: The modified Delphi technique was used to establish the views of 12 expert panel members on the use of dietary nitrate as an ergogenic aid. Over three iterative rounds (two via questionnaire and one via videoconferencing), the expert panel members voted on 222 statements relating to dietary nitrate as an ergogenic aid. Consensus was reached when > 80% of the panel provided the same answer (i.e. yes or no). Statements for which > 80% of the panel cast a vote of insufficient evidence were categorised as such and removed from further voting. These statements were subsequently used to identify directions for future research. RESULTS: The 12 panel members contributed to voting in all three rounds. A total of 39 statements (17.6%) reached consensus across the three rounds (20 yes, 19 no). In round one, 21 statements reached consensus (11 yes, 10 no). In round two, seven further statements reached consensus (4 yes, 3 no). In round three, an additional 11 statements reached consensus (5 yes, 6 no). The panel agreed that there was insufficient evidence for 134 (60.4%) of the statements, and were unable to agree on the outcome of the remaining statements. CONCLUSIONS: This study provides information on the current expert consensus on dietary nitrate, which may be of value to athletes, coaches, practitioners and researchers. The effects of dietary nitrate appear to be diminished in individuals with a higher aerobic fitness (peak oxygen consumption [V̇O2peak] > 60 ml/kg/min), and therefore, aerobic fitness should be taken into account when considering use of dietary nitrate as an ergogenic aid. It is recommended that athletes looking to benefit from dietary nitrate supplementation should consume 8-16 mmol nitrate acutely or 4-16 mmol/day nitrate chronically (with the final dose ingested 2-4 h pre-exercise) to maximise ergogenic effects, taking into consideration that, from a safety perspective, athletes may be best advised to increase their intake of nitrate via vegetables and vegetable juices. Acute nitrate supplementation up to ~ 16 mmol is believed to be safe, although the safety of chronic nitrate supplementation requires further investigation. The expert panel agreed that there was insufficient evidence for most of the appraised statements, highlighting the need for future research in this area.


Assuntos
Substâncias para Melhoria do Desempenho , Consenso , Técnica Delphi , Suplementos Nutricionais , Humanos , Nitratos
6.
Nutrients ; 14(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35268044

RESUMO

Low energy availability (LEA) is considered to be the underlying cause of a number of maladaptations in athletes, including impaired physiological function, low bone mineral density (BMD), and hormonal dysfunction. This is collectively referred to as 'Relative Energy Deficiency in Sport' (RED-S). LEA is calculated through assessment of dietary energy intake (EI), exercise energy expenditure (EEE) and fat-free mass (FFM). The incidence of LEA in Paralympic athletes is relatively unknown; however, there are legitimate concerns that Para athletes may be at even higher risk of LEA than able-bodied athletes. Unfortunately, there are numerous issues with the application of LEA assessment tools and the criterion for diagnosis within the context of a Para population. The calculation of EEE, in particular, is limited by a distinct lack of published data that cover a range of impairments and activities. In addition, for several RED-S-related factors, it is difficult to distinguish whether they are truly related to LEA or a consequence of the athlete's impairment and medical history. This narrative review outlines deficits and complexities when assessing RED-S and LEA in Para athletes, presents the information that we do have, and provides suggestions for future progress in this important area of sports nutrition.


Assuntos
Paratletas , Deficiência Energética Relativa no Esporte , Atletas , Ingestão de Energia , Humanos , Fatores de Risco
7.
Front Sports Act Living ; 4: 852230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252862

RESUMO

Sports nutrition is a relatively new discipline; with ~100 published papers/year in the 1990s to ~3,500+ papers/year today. Historically, sports nutrition research was primarily initiated by university-based exercise physiologists who developed new methodologies that could be impacted by nutrition interventions (e.g., carbohydrate/fat oxidation by whole body calorimetry and muscle glycogen by muscle biopsies). Application of these methods in seminal studies helped develop current sports nutrition guidelines as compiled in several expert consensus statements. Despite this wealth of knowledge, a limitation of the current evidence is the lack of appropriate intervention studies (e.g., randomized controlled clinical trials) in elite athlete populations that are ecologically valid (e.g., in real-life training and competition settings). Over the last decade, there has been an explosion of sports science technologies, methodologies, and innovations. Some of these recent advances are field-based, thus, providing the opportunity to accelerate the application of ecologically valid personalized sports nutrition interventions. Conversely, the acceleration of novel technologies and commercial solutions, especially in the field of biotechnology and software/app development, has far outstripped the scientific communities' ability to validate the effectiveness and utility of the vast majority of these new commercial technologies. This mini-review will highlight historical and present innovations with particular focus on technological innovations in sports nutrition that are expected to advance the field into the future. Indeed, the development and sharing of more "big data," integrating field-based measurements, resulting in more ecologically valid evidence for efficacy and personalized prescriptions, are all future key opportunities to further advance the field of sports nutrition.

8.
Appl Physiol Nutr Metab ; 47(5): 547-554, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35138972

RESUMO

We aimed to assess the association between gastrointestinal (GI) injury, complaints, and food intake in 60-km ultramarathon runners. Thirty-three ultramarathon runners provided pre- and post-race blood samples for assessment of GI injury by intestinal fatty-acid binding protein (I-FABP), and inflammatory response by interleukin (IL)-6, IL-8, tumour necrosis factor alpha (TNF-α), and C-reactive protein (CRP). GI complaints and nutritional intake were reported by a post-race questionnaire. GI complaints were reported by 73% of the runners, of which 20% reported 1 or 2 severe complaints. IL-6, IL8, TNF-α, and CRP increased significantly from pre- to post-race (P < 0.001 for all biomarkers), while I-FABP did not (1375 [IQR: 1264-2073] to 1726 [IQR: 985-3287] pg/mL; P = 0.330). The 'GI complaints score', as the integral of the number and severity of GI complaints, did not correlate with ΔI-FABP (rs: -0.050, P = 0.790) or energy intake (rs: 0.211, P = 0.260). However, there was a significant negative correlation between energy intake and ΔI-FABP (rs: -0.388, P = 0.031). In conclusion, GI complaints were neither associated with food intake nor GI injury as assessed by plasma I-FABP response. Energy intake, however, was inversely related to the I-FABP response to exercise. This finding suggests that substantial energy intakes during exercise may prevent exercise-induced GI injury as assessed by the I-FABP response. Novelty: No association between gastrointestinal complaints and gastrointestinal injury (I-FABP response) or food intake was present. There was an inverse correlation between energy intake and plasma I-FABP response, suggesting that higher energy intakes may prevent gastrointestinal injury as assessed by the I-FABP response.


Assuntos
Corrida , Ingestão de Alimentos , Exercício Físico/fisiologia , Trato Gastrointestinal/metabolismo , Interleucina-6/metabolismo , Corrida/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
10.
Eur J Sport Sci ; 21(6): 871-878, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32594854

RESUMO

Purpose: Dietary nitrate has been shown to enhance muscle contractile function and has, therefore, been linked to increased muscle power and sprint exercise performance. However, the impact of dietary nitrate supplementation on maximal strength, performance and muscular endurance remains to be established. Methods: Fifteen recreationally active males (25 ± 4 y, BMI 24 ± 3 kg/m2) participated in a randomized double-blinded cross-over study comprising two 6-d supplementation periods; 140 mL/d nitrate-rich (BR; 985 mg/d) and nitrate-depleted (PLA; 0.37 mg/d) beetroot juice. Three hours following the last supplement, we assessed countermovement jump (CMJ) performance, maximal strength and power of the upper leg by voluntary isometric (30° and 60° angle) and isokinetic contractions (60, 120, 180 and 300°·s-1), and muscular endurance (total workload) by 30 reciprocal isokinetic voluntary contractions at 180°·s-1. Results: Despite differences in plasma nitrate (BR: 879 ± 239 vs. PLA: 33 ± 13 µmol/L, P < 0.001) and nitrite (BR: 463 ± 217 vs. PLA: 176 ± 50 nmol/L, P < 0.001) concentrations prior to exercise testing, CMJ height (BR: 39.3 ± 6.3 vs. PLA: 39.6 ± 6.3 cm; P = 0.39) and muscular endurance (BR: 3.93 ± 0.69 vs. PLA: 3.90 ± 0.66 kJ; P = 0.74) were not different between treatments. In line, isometric strength (P > 0.50 for both angles) and isokinetic knee extension power (P > 0.33 for all velocities) did not differ between treatments. Isokinetic knee flexion power was significantly higher following BR compared with PLA ingestion at 60°·s-1 (P = 0.001), but not at 120°·s-1 (P = 0.24), 180°·s-1 (P = 0.066), and 300°·s-1 (P = 0.36). Conclusion: Nitrate supplementation does not improve maximal strength, countermovement jump performance and muscular endurance in healthy, active males.


Assuntos
Beta vulgaris , Suplementos Nutricionais , Sucos de Frutas e Vegetais , Movimento/fisiologia , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Adulto , Estudos Cross-Over , Método Duplo-Cego , Humanos , Contração Isométrica/fisiologia , Masculino , Nitratos/administração & dosagem , Nitratos/sangue , Nitritos/sangue , Resistência Física/fisiologia , Desempenho Físico Funcional , Extremidade Superior/fisiologia
11.
Med Sci Sports Exerc ; 53(2): 280-294, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32735111

RESUMO

Nitric oxide (NO) is a gaseous signaling molecule that plays an important role in myriad physiological processes, including the regulation of vascular tone, neurotransmission, mitochondrial respiration, and skeletal muscle contractile function. NO may be produced via the canonical NO synthase-catalyzed oxidation of l-arginine and also by the sequential reduction of nitrate to nitrite and then NO. The body's nitrate stores can be augmented by the ingestion of nitrate-rich foods (primarily green leafy vegetables). NO bioavailability is greatly enhanced by the activity of bacteria residing in the mouth, which reduce nitrate to nitrite, thereby increasing the concentration of circulating nitrite, which can be reduced further to NO in regions of low oxygen availability. Recent investigations have focused on promoting this nitrate-nitrite-NO pathway to positively affect indices of cardiovascular health and exercise tolerance. It has been reported that dietary nitrate supplementation with beetroot juice lowers blood pressure in hypertensive patients, and sodium nitrite supplementation improves vascular endothelial function and reduces the stiffening of large elastic arteries in older humans. Nitrate supplementation has also been shown to enhance skeletal muscle function and to improve exercise performance in some circumstances. Recently, it has been established that nitrate concentration in skeletal muscle is much higher than that in blood and that muscle nitrate stores are exquisitely sensitive to dietary nitrate supplementation and deprivation. In this review, we consider the possibility that nitrate represents an essential storage form of NO and discuss the integrated function of the oral microbiome, circulation, and skeletal muscle in nitrate-nitrite-NO metabolism, as well as the practical relevance for health and performance.


Assuntos
Suplementos Nutricionais , Exercício Físico/fisiologia , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Animais , Disponibilidade Biológica , Circulação Sanguínea , Doenças Cardiovasculares/fisiopatologia , Endotélio Vascular/fisiologia , Homeostase , Humanos , Microbiota , Boca/microbiologia , Músculo Esquelético/metabolismo , Fatores de Risco
12.
J Acad Nutr Diet ; 120(8): 1305-1317, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32386891

RESUMO

BACKGROUND: Emerging evidence suggests that increasing dietary nitrate intake may be an effective approach to reduce blood pressure. Beetroot juice is often used to supplement dietary nitrate, whereas nitrate intake levels from habitual diet are low. An increase in the habitual intake of nitrate-rich vegetables may represent an alternative to nitrate supplementation. However, the effectiveness and acceptability of a nitrate-rich-vegetables diet remain to be established. OBJECTIVE: The aim was to investigate the effect and feasibility of two different intervention strategies to increase dietary nitrate intake, on plasma nitrate/nitrite concentrations and blood pressure. DESIGN: A randomized, crossover trial was used. PARTICIPANTS: Participants were healthy men and women (both n=15; age: 24±6 years) from the Netherlands. INTERVENTION: Participants were instructed to consume ∼400 mg nitrate at lunch, provided through nitrate-rich vegetables and dietary counseling, or beetroot juice supplementation. Both interventions lasted 1 week, with 1-week washout (January to April 2017). MAIN OUTCOME: Plasma nitrate and nitrite concentrations and resting systolic and diastolic blood pressure were measured in an overnight fasted state (before and after intervention) and ∼2.5 hours after lunch (before and throughout intervention on day 1, 4, and 7). STATISTICAL ANALYSIS: Two-factor (time × treatment) repeated-measures analyses of variance were performed. RESULTS: Mean plasma nitrate concentrations increased with both interventions, with a larger increase in beetroot juice vs nitrate-rich vegetables, both in a fasted state and ∼2.5 hours after lunch (day 1, beetroot juice: 2.31±0.56 mg/dL [373±90 µmol/L] vs nitrate-rich vegetables: 1.71±0.83 mg/dL [277±134 µmol/L]; P<0.001). Likewise, mean plasma nitrite concentrations increased with both interventions, but were higher after lunch in beetroot juice than in nitrate-rich vegetables (day 1: 2.58±1.52 µg/dL [560±331 nmol/L] vs 2.15±1.21 µg/dL [468±263 nmol/L]; P=0.020). Fasting mean systolic and diastolic blood pressure did not change, but mean systolic and diastolic blood pressure assessed ∼2.5 hours after lunch were significantly reduced throughout both intervention periods (P<0.05), with no differences between beetroot juice and nitrate-rich vegetables (day 1, systolic blood pressure: -5.1±9.5 mm Hg and diastolic blood pressure: -5.3±8.9 mm Hg). CONCLUSION: Short-term consumption of dietary nitrate in the form of nitrate-rich vegetables represents an effective means to increase plasma nitrate and nitrite concentrations, and reduces blood pressure to the same extent as beetroot juice supplementation.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Nitratos/administração & dosagem , Nitratos/sangue , Nitritos/sangue , Verduras/química , Adolescente , Adulto , Beta vulgaris , Bebidas , Estudos Cross-Over , Dieta , Feminino , Humanos , Masculino , Nitrosaminas/urina , Raízes de Plantas , Adulto Jovem
13.
Med Sci Sports Exerc ; 51(10): 2041-2049, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31525168

RESUMO

INTRODUCTION: Recently, it has been speculated that protein supplementation may further augment the adaptations to chronic endurance exercise training. We assessed the effect of protein supplementation during chronic endurance exercise training on whole-body oxidative capacity (V˙O2max) and endurance exercise performance. METHODS: In this double-blind, randomized, parallel placebo-controlled trial, 60 recreationally active males (age, 27 ± 6 yr; body mass index, 23.8 ± 2.6 kg·m; V˙O2max, 47 ± 6 mL·min·kg) were subjected to 12 wk of triweekly endurance exercise training. After each session and each night before sleep, participants ingested either a protein supplement (PRO; 28.7 g casein protein) or an isoenergetic carbohydrate placebo (PLA). Before and after the 12 wk of training, V˙O2max and endurance exercise performance (~10-km time trial) were assessed on a cycle ergometer. Muscular endurance (total workload achieved during 30 reciprocal isokinetic contractions) was assessed by isokinetic dynamometry and body composition by dual-energy x-ray absorptiometry. Mixed-model ANOVA was applied to assess whether training adaptations differed between groups. RESULTS: Endurance exercise training induced an 11% ± 6% increase in V˙O2max (time effect, P < 0.0001), with no differences between groups (PRO, 48 ± 6 to 53 ± 7 mL·min·kg; PLA, 46 ± 5 to 51 ± 6 mL·min·kg; time-treatment interaction, P = 0.50). Time to complete the time trial was reduced by 14% ± 7% (time effect, P < 0.0001), with no differences between groups (time-treatment interaction, P = 0.15). Muscular endurance increased by 6% ± 7% (time effect, P < 0.0001), with no differences between groups (time-treatment interaction, P = 0.84). Leg lean mass showed an increase after training (P < 0.0001), which tended to be greater in PRO compared with PLA (0.5 ± 0.7 vs 0.2 ± 0.6 kg, respectively; time-treatment interaction, P = 0.073). CONCLUSION: Protein supplementation after exercise and before sleep does not further augment the gains in whole-body oxidative capacity and endurance exercise performance after chronic endurance exercise training in recreationally active, healthy young males.


Assuntos
Adaptação Fisiológica , Proteínas Alimentares/administração & dosagem , Suplementos Nutricionais , Treino Aeróbico , Resistência Física/efeitos dos fármacos , Adulto , Composição Corporal , Índice de Massa Corporal , Método Duplo-Cego , Humanos , Masculino , Força Muscular/fisiologia , Consumo de Oxigênio/fisiologia , Resistência Física/fisiologia , Adulto Jovem
14.
Med Sci Sports Exerc ; 51(3): 436-444, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30299412

RESUMO

PURPOSE: Strenuous exercise induces intestinal injury, which is likely related to splanchnic hypoperfusion and may be associated with gastrointestinal complaints commonly reported during certain exercise modalities. Increasing circulating nitric oxide (NO) levels or inducing postprandial hyperemia may improve splanchnic perfusion, thereby attenuating intestinal injury during exercise. Therefore, we investigated the effects of both dietary nitrate ingestion and sucrose ingestion on splanchnic perfusion and intestinal injury induced by prolonged strenuous cycling. METHODS: In a randomized crossover manner, 16 well-trained male athletes (age, 28 ± 7 yr; Wmax, 5.0 ± 0.3 W·kg) cycled 60 min at 70% Wmax after acute ingestion of sodium nitrate (NIT; 800 mg NO3), sucrose (SUC; 40 g), or a water placebo (PLA). Splanchnic perfusion was assessed by determining the gap between gastric and arterial pCO2 (gapg-apCO2) using gastric air tonometry. Plasma intestinal fatty acid-binding protein (I-FABP) concentrations, reflecting enterocyte damage, were assessed every 20 min during and up to 60 min of postexercise recovery. RESULTS: The exercise protocol resulted in splanchnic hypoperfusion, as gapg-apCO2 levels increased during exercise (P < 0.001), with no differences between treatments (P = 0.47). Although plasma I-FABP concentrations increased during exercise and postexercise recovery for all treatments (P < 0.0001), the increase was different between treatments (P < 0.0001). Post hoc comparisons showed an attenuated increase in I-FABP in SUC versus PLA (P = 0.020). In accordance, I-FABP area under the curve (AUC0-120) was significantly lower in SUC versus PLA (57,270 ± 77,425 vs 114,907 ± 91,527 pg·mL per 120 min, P = 0.002). No differences were observed between NIT and PLA (P = 0.99). CONCLUSION: Sucrose but not nitrate ingestion lowers intestinal injury evoked during prolonged strenuous cycling. These results suggest that sucrose ingestion, but not nitrate, prevents hypoperfusion-induced gastrointestinal damage during exercise and, as such, may help to lower exercise-related gastrointestinal complaints.


Assuntos
Ciclismo/lesões , Intestinos/lesões , Nitratos/administração & dosagem , Circulação Esplâncnica , Sacarose/administração & dosagem , Adulto , Atletas , Dióxido de Carbono/sangue , Estudos Cross-Over , Suplementos Nutricionais , Ingestão de Alimentos , Proteínas de Ligação a Ácido Graxo/sangue , Humanos , Masculino , Óxido Nítrico/sangue , Adulto Jovem
15.
Int J Sport Nutr Exerc Metab ; 28(5): 468-473, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29252047

RESUMO

Nitrate-rich beetroot juice is thought to have ergogenic effects, particularly in conditions where oxygen availability is limited. Whether these effects also apply to elite athletes is currently unknown. The aim of this study was to assess the effects of beetroot juice supplementation on dynamic apnea and intermittent sprint performance in elite female water polo players. In a double-blinded, randomized, crossover manner, the Dutch National female water polo team (N = 14) was subjected to two 6-day supplementation periods (1 and 2), with either 140 ml/day of nitrate-rich (BR; ∼800 mg/day nitrate) or nitrate-depleted (PLA) beetroot juice. Following blood sampling on Day 6, the athletes performed a maximal-distance front crawl swimming test without breathing (dynamic apnea test). In addition, intermittent sprint performance was assessed by performing 16 swim sprints of 15 m, in a 4 × 4 block with 30-s recovery between blocks (intermittent test). Distance covered during the dynamic apnea test did not differ between BR (49.5 ± 7.8 m) and PLA (46.9 ± 9.1 m, p = .178). However, when correcting for test order, the distance covered was significantly larger in BR versus PLA when BR was ingested in Period 2 (50.1 ± 8.5 vs. 42.8 ± 5.7 m, p = .002), whereas no difference was observed when BR was ingested in Period 1 (48.8 ± 7.4 vs. 52.3 ± 10.4 m, p = .10). The time to complete the intermittent test was not different between BR and PLA (316.0 ± 7.9 vs. 316.3 ± 6.9 s, p = .73). In conclusion, beetroot juice supplementation does not improve intermittent performance in elite female water polo players, but there may be a potential for ergogenic effects during dynamic apnea.


Assuntos
Desempenho Atlético , Beta vulgaris , Suspensão da Respiração , Sucos de Frutas e Vegetais , Substâncias para Melhoria do Desempenho/administração & dosagem , Fenômenos Fisiológicos da Nutrição Esportiva , Adolescente , Atletas , Estudos Cross-Over , Método Duplo-Cego , Feminino , Humanos , Esportes Aquáticos
16.
Nutrients ; 9(3)2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28327503

RESUMO

It has been shown that nitrate supplementation can enhance endurance exercise performance. Recent work suggests that nitrate ingestion can also increase intermittent type exercise performance in recreational athletes. We hypothesized that six days of nitrate supplementation can improve high-intensity intermittent type exercise performance in trained soccer players. Thirty-two male soccer players (age: 23 ± 1 years, height: 181 ± 1 m, weight: 77 ± 1 kg, playing experience: 15.2 ± 0.5 years, playing in the first team of a 2nd or 3rd Dutch amateur league club) participated in this randomized, double-blind cross-over study. All subjects participated in two test days in which high-intensity intermittent running performance was assessed using the Yo-Yo IR1 test. Subjects ingested nitrate-rich (140 mL; ~800 mg nitrate/day; BR) or a nitrate-depleted beetroot juice (PLA) for six subsequent days, with at least eight days of wash-out between trials. The distance covered during the Yo-Yo IR1 was the primary outcome measure, while heart rate (HR) was measured continuously throughout the test, and a single blood and saliva sample were collected just prior to the test. Six days of BR ingestion increased plasma and salivary nitrate and nitrite concentrations in comparison to PLA (p < 0.001), and enhanced Yo-Yo IR1 test performance by 3.4 ± 1.3% (from 1574 ± 47 to 1623 ± 48 m; p = 0.027). Mean HR was lower in the BR (172 ± 2) vs. PLA trial (175 ± 2; p = 0.014). Six days of BR ingestion effectively improves high-intensity intermittent type exercise performance in trained soccer players.


Assuntos
Desempenho Atlético , Beta vulgaris/química , Sucos de Frutas e Vegetais , Treinamento Intervalado de Alta Intensidade , Fenômenos Fisiológicos da Nutrição Esportiva , Estatura , Peso Corporal , Estudos Cross-Over , Método Duplo-Cego , Frequência Cardíaca , Humanos , Masculino , Países Baixos , Nitratos/administração & dosagem , Nitratos/análise , Nitritos/administração & dosagem , Nitritos/análise , Raízes de Plantas/química , Saliva/química , Futebol , Resultado do Tratamento , Adulto Jovem
17.
Int J Sport Nutr Exerc Metab ; 27(1): 11-17, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27616745

RESUMO

While the majority of studies reporting ergogenic effects of dietary nitrate have used a multiday supplementation protocol, some studies suggest that a single dose of dietary nitrate before exercise can also improve subsequent performance. We aimed to compare the impact of acute and 6-day sodium nitrate supplementation on oxygen uptake (V̇O2) and time-trial performance in trained cyclists. Using a randomized, double-blind, cross-over design, 17 male cyclists (25 ± 4 y, V̇O2peak 65 ± 4 ml·kg-1·min-1, Wmax 411 ± 35 W) were subjected to 3 different trials; 5 days placebo and 1 day sodium nitrate supplementation (1-DAY); 6 days sodium nitrate supplementation (6-DAY); 6 days placebo supplementation (PLA). Nitrate was administered as 1097 mg sodium nitrate providing 800 mg (~12.9 mmol) nitrate per day. Three hours after ingestion of the last supplemental bolus, indirect calorimetry was performed while subjects performed 30 min of exercise at 45% Wmax and 30 min at 65% Wmax on a cycle ergometer, followed by a 10 km time-trial. Immediately before exercise, plasma [nitrate] and [nitrite] increased to a similar extent during the 6-DAY and 1-DAY trial, but not with PLA (plasma nitrite: 501 ± 205, 553 ± 278, and 239 ± 74 nM, respectively; p < .001). No differences were observed between interventions in V̇O2 during submaximal exercise, or in time to complete the time-trial (6-DAY: 1004 ± 61, 1-DAY: 1022 ± 72, PLA: 1017 ± 71 s; p = .28). We conclude that both acute and 6-days of sodium nitrate supplementation do not alter V̇O2 during submaximal exercise or improve time-trial performance in highly trained cyclists, despite increasing plasma [nitrate] and [nitrite].


Assuntos
Desempenho Atlético , Suplementos Nutricionais , Nitratos/administração & dosagem , Consumo de Oxigênio/efeitos dos fármacos , Substâncias para Melhoria do Desempenho/administração & dosagem , Adulto , Atletas , Ciclismo , Pressão Sanguínea/efeitos dos fármacos , Índice de Massa Corporal , Estudos Cross-Over , Método Duplo-Cego , Exercício Físico , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Humanos , Masculino , Nitratos/sangue , Nitritos/sangue , Adulto Jovem
18.
Int J Sport Nutr Exerc Metab ; 27(2): 105-114, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27710150

RESUMO

Dietary protein intake should be optimized in all athletes to ensure proper recovery and enhance the skeletal muscle adaptive response to exercise training. In addition to total protein intake, the use of specific proteincontaining food sources and the distribution of protein throughout the day are relevant for optimizing protein intake in athletes. In the present study, we examined the daily intake and distribution of various proteincontaining food sources in a large cohort of strength, endurance and team-sport athletes. Well-trained male (n=327) and female (n=226) athletes completed multiple web-based 24-hr dietary recalls over a 2-4 wk period. Total energy intake, the contribution of animal- and plant-based proteins to daily protein intake, and protein intake at six eating moments were determined. Daily protein intake averaged 108±33 and 90±24 g in men and women, respectively, which corresponded to relative intakes of 1.5±0.4 and 1.4±0.4 g/kg. Dietary protein intake was correlated with total energy intake in strength (r=0.71, p <.001), endurance (r=0.79, p <.001) and team-sport (r=0.77, p <.001) athletes. Animal and plant-based sources of protein intake was 57% and 43%, respectively. The distribution of protein intake was 19% (19±8 g) at breakfast, 24% (25±13 g) at lunch and 38% (38±15 g) at dinner. Protein intake was below the recommended 20 g for 58% of athletes at breakfast, 36% at lunch and 8% at dinner. In summary, this survey of athletes revealed they habitually consume > 1.2 g protein/kg/d, but the distribution throughout the day may be suboptimal to maximize the skeletal muscle adaptive response to training.


Assuntos
Atletas , Desempenho Atlético , Proteínas Alimentares/administração & dosagem , Exercício Físico , Comportamento Alimentar , Esforço Físico , Fenômenos Fisiológicos da Nutrição Esportiva , Adolescente , Adulto , Criança , Estudos de Coortes , Comportamento Alimentar/etnologia , Feminino , Humanos , Internet , Masculino , Pessoa de Meia-Idade , Proteínas do Leite/administração & dosagem , Proteínas Musculares/administração & dosagem , Força Muscular , Países Baixos , Inquéritos Nutricionais , Resistência Física , Proteínas de Vegetais Comestíveis/administração & dosagem , Fenômenos Fisiológicos da Nutrição Esportiva/etnologia , Adulto Jovem
19.
Int J Sport Nutr Exerc Metab ; 27(2): 148-157, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27768510

RESUMO

Although beetroot juice, as a nitrate carrier, is a popular ergogenic supplement among athletes, nitrate is consumed through the regular diet as well. We aimed to assess the habitual dietary nitrate intake and identify the main contributing food sources in a large group of highly trained athletes. Dutch highly trained athletes (226 women and 327 men) completed 2-4 web-based 24-hr dietary recalls and questionnaires within a 2- to 4-week period. The nitrate content of food products and food groups was determined systematically based on values found in regulatory reports and scientific literature. These were then used to calculate each athlete's dietary nitrate intake from the web-based recalls. The median[IQR] habitual nitrate intake was 106[75-170] mg/d (range 19-525 mg/d). Nitrate intake correlated with energy intake (ρ = 0.28, p < .001), and strongly correlated with vegetable intake (ρ = 0.78, p < .001). In accordance, most of the dietary nitrate was consumed through vegetables, potatoes and fruit, accounting for 74% of total nitrate intake, with lettuce and spinach contributing most. When corrected for energy intake, nitrate intake was substantially higher in female vs male athletes (12.8[9.2-20.0] vs 9.4[6.2-13.8] mg/MJ; p < .001). This difference was attributed to the higher vegetable intake in female vs male athletes (150[88-236] vs 114[61-183] g/d; p < .001). In conclusion, median daily intake of dietary nitrate in highly trained athletes was 106 mg, with large interindividual variation. Dietary nitrate intake was strongly associated with the intake of vegetables. Increasing the intake of nitrate-rich vegetables in the diet might serve as an alternative strategy for nitrate supplementation.


Assuntos
Atletas , Dieta Saudável , Comportamento Alimentar , Nitratos/administração & dosagem , Cooperação do Paciente , Fenômenos Fisiológicos da Nutrição Esportiva , Verduras , Adulto , Desempenho Atlético , Comportamento Competitivo , Dieta Saudável/etnologia , Comportamento Alimentar/etnologia , Feminino , Humanos , Internet , Lactuca/química , Masculino , Países Baixos , Nitratos/análise , Inquéritos Nutricionais , Valor Nutritivo , Cooperação do Paciente/etnologia , Folhas de Planta/química , Autorrelato , Fatores Sexuais , Spinacia oleracea/química , Fenômenos Fisiológicos da Nutrição Esportiva/etnologia , Verduras/química
20.
J Nutr ; 146(5): 986-93, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27075914

RESUMO

BACKGROUND: Dietary nitrate is receiving increased attention due to its reported ergogenic and cardioprotective properties. The extent to which ingestion of various nitrate-rich vegetables increases postprandial plasma nitrate and nitrite concentrations and lowers blood pressure is currently unknown. OBJECTIVE: We aimed to assess the impact of ingesting different nitrate-rich vegetables on subsequent plasma nitrate and nitrite concentrations and resting blood pressure in healthy normotensive individuals. METHODS: With the use of a semirandomized crossover design, 11 men and 7 women [mean ± SEM age: 28 ± 1 y; mean ± SEM body mass index (BMI, in kg/m(2)): 23 ± 1; exercise: 1-10 h/wk] ingested 4 different beverages, each containing 800 mg (∼12.9 mmol) nitrate: sodium nitrate (NaNO3), concentrated beetroot juice, a rocket salad beverage, and a spinach beverage. Plasma nitrate and nitrite concentrations and blood pressure were determined before and up to 300 min after beverage ingestion. Data were analyzed using repeated-measures ANOVA. RESULTS: Plasma nitrate and nitrite concentrations increased after ingestion of all 4 beverages (P < 0.001). Peak plasma nitrate concentrations were similar for all treatments (all values presented as means ± SEMs: NaNO3: 583 ± 29 µmol/L; beetroot juice: 597 ± 23 µmol/L; rocket salad beverage: 584 ± 24 µmol/L; spinach beverage: 584 ± 23 µmol/L). Peak plasma nitrite concentrations were different between treatments (NaNO3: 580 ± 58 nmol/L; beetroot juice: 557 ± 57 nmol/L; rocket salad beverage: 643 ± 63 nmol/L; spinach beverage: 980 ± 160 nmol/L; P = 0.016). When compared with baseline, systolic blood pressure declined 150 min after ingestion of beetroot juice (from 118 ± 2 to 113 ± 2 mm Hg; P < 0.001) and rocket salad beverage (from 122 ± 3 to 116 ± 2 mm Hg; P = 0.007) and 300 min after ingestion of spinach beverage (from 118 ± 2 to 111 ± 3 mm Hg; P < 0.001), but did not change with NaNO3 Diastolic blood pressure declined 150 min after ingestion of all beverages (P < 0.05) and remained lower at 300 min after ingestion of rocket salad (P = 0.045) and spinach (P = 0.001) beverages. CONCLUSIONS: Ingestion of nitrate-rich beetroot juice, rocket salad beverage, and spinach beverage effectively increases plasma nitrate and nitrite concentrations and lowers blood pressure to a greater extent than sodium nitrate. These findings show that nitrate-rich vegetables can be used as dietary nitrate supplements. This trial was registered at clinicaltrials.gov as NCT02271633.


Assuntos
Beta vulgaris/química , Pressão Sanguínea/efeitos dos fármacos , Brassicaceae/química , Dieta , Nitratos/sangue , Nitritos/sangue , Spinacia oleracea/química , Adulto , Feminino , Sucos de Frutas e Vegetais , Humanos , Masculino , Nitratos/farmacologia , Extratos Vegetais/farmacologia , Valores de Referência , Verduras/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...