Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(1): 337-348, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36583333

RESUMO

The determination of the oligomeric state of functional enzymes is essential for the mechanistic understanding of their catalytic activities. RecQ helicases have diverse biochemical activities, but it is still unclear how their activities are related to their oligomeric states. We use single-molecule multi-color fluorescence imaging to determine the oligomeric states of Werner syndrome protein (WRN) during its unwinding and replication fork regression activities. We reveal that WRN binds to a forked DNA as a dimer, and unwinds it without any change of its oligomeric state. In contrast, WRN binds to a replication fork as a tetramer, and is dimerized during activation of replication fork regression. By selectively inhibiting the helicase activity of WRN on specific strands, we reveal how the active dimers of WRN distinctly use the energy of ATP hydrolysis for repetitive unwinding and replication fork regression.


Assuntos
Helicase da Síndrome de Werner , Humanos , Replicação do DNA , Exodesoxirribonucleases/metabolismo , RecQ Helicases/metabolismo , Helicase da Síndrome de Werner/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...