Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Braz. J. Anesth. (Impr.) ; 73(2): 186-197, March-Apr. 2023. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1439585

RESUMO

Abstract Anemia is associated with increased risk of Acute Kidney Injury (AKI), stroke and mortality in perioperative patients. We sought to understand the mechanism(s) by assessing the integrative physiological responses to anemia (kidney, brain), the degrees of anemia-induced tissue hypoxia, and associated biomarkers and physiological parameters. Experimental measurements demonstrate a linear relationship between blood Oxygen Content (CaO2) and renal microvascular PO2 (y = 0.30x + 6.9, r2= 0.75), demonstrating that renal hypoxia is proportional to the degree of anemia. This defines the kidney as a potential oxygen sensor during anemia. Further evidence of renal oxygen sensing is demonstrated by proportional increase in serum Erythropoietin (EPO) during anemia (y = 93.806*10−0.02, r2= 0.82). This data implicates systemic EPO levels as a biomarker of anemia-induced renal tissue hypoxia. By contrast, cerebral Oxygen Delivery (DO2) is defended by a profound proportional increase in Cerebral Blood Flow (CBF), minimizing tissue hypoxia in the brain, until more severe levels of anemia occur. We hypothesize that the kidney experiences profound early anemia-induced tissue hypoxia which contributes to adaptive mechanisms to preserve cerebral perfusion. At severe levels of anemia, renal hypoxia intensifies, and cerebral hypoxia occurs, possibly contributing to the mechanism(s) of AKI and stroke when adaptive mechanisms to preserve organ perfusion are overwhelmed. Clinical methods to detect renal tissue hypoxia (an early warning signal) and cerebral hypoxia (a later consequence of severe anemia) may inform clinical practice and support the assessment of clinical biomarkers (i.e., EPO) and physiological parameters (i.e., urinary PO2) of anemia-induced tissue hypoxia. This information may direct targeted treatment strategies to prevent adverse outcomes associated with anemia.


Assuntos
Humanos , Hipóxia Encefálica/complicações , Acidente Vascular Cerebral , Injúria Renal Aguda/etiologia , Anemia/complicações , Oxigênio , Biomarcadores , Rim , Hipóxia/complicações
2.
Braz J Anesthesiol ; 73(2): 186-197, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36377057

RESUMO

Anemia is associated with increased risk of Acute Kidney Injury (AKI), stroke and mortality in perioperative patients. We sought to understand the mechanism(s) by assessing the integrative physiological responses to anemia (kidney, brain), the degrees of anemia-induced tissue hypoxia, and associated biomarkers and physiological parameters. Experimental measurements demonstrate a linear relationship between blood Oxygen Content (CaO2) and renal microvascular PO2 (y = 0.30x + 6.9, r2 = 0.75), demonstrating that renal hypoxia is proportional to the degree of anemia. This defines the kidney as a potential oxygen sensor during anemia. Further evidence of renal oxygen sensing is demonstrated by proportional increase in serum Erythropoietin (EPO) during anemia (y = 93.806*10-0.02, r2 = 0.82). This data implicates systemic EPO levels as a biomarker of anemia-induced renal tissue hypoxia. By contrast, cerebral Oxygen Delivery (DO2) is defended by a profound proportional increase in Cerebral Blood Flow (CBF), minimizing tissue hypoxia in the brain, until more severe levels of anemia occur. We hypothesize that the kidney experiences profound early anemia-induced tissue hypoxia which contributes to adaptive mechanisms to preserve cerebral perfusion. At severe levels of anemia, renal hypoxia intensifies, and cerebral hypoxia occurs, possibly contributing to the mechanism(s) of AKI and stroke when adaptive mechanisms to preserve organ perfusion are overwhelmed. Clinical methods to detect renal tissue hypoxia (an early warning signal) and cerebral hypoxia (a later consequence of severe anemia) may inform clinical practice and support the assessment of clinical biomarkers (i.e., EPO) and physiological parameters (i.e., urinary PO2) of anemia-induced tissue hypoxia. This information may direct targeted treatment strategies to prevent adverse outcomes associated with anemia.


Assuntos
Injúria Renal Aguda , Anemia , Hipóxia Encefálica , Acidente Vascular Cerebral , Humanos , Hipóxia/complicações , Anemia/complicações , Rim , Oxigênio , Hipóxia Encefálica/complicações , Injúria Renal Aguda/etiologia , Biomarcadores , Período Perioperatório/efeitos adversos
3.
Nat Commun ; 13(1): 2862, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606344

RESUMO

From mouse to primate, there is a striking discontinuity in our current understanding of the neural coding of motion direction. In non-primate mammals, directionally selective cell types and circuits are a signature feature of the retina, situated at the earliest stage of the visual process. In primates, by contrast, direction selectivity is a hallmark of motion processing areas in visual cortex, but has not been found in the retina, despite significant effort. Here we combined functional recordings of light-evoked responses and connectomic reconstruction to identify diverse direction-selective cell types in the macaque monkey retina with distinctive physiological properties and synaptic motifs. This circuitry includes an ON-OFF ganglion cell type, a spiking, ON-OFF polyaxonal amacrine cell and the starburst amacrine cell, all of which show direction selectivity. Moreover, we discovered that macaque starburst cells possess a strong, non-GABAergic, antagonistic surround mediated by input from excitatory bipolar cells that is critical for the generation of radial motion sensitivity in these cells. Our findings open a door to investigation of a precortical circuitry that computes motion direction in the primate visual system.


Assuntos
Conectoma , Macaca , Retina , Células Amácrinas/fisiologia , Animais , Potenciais Evocados Visuais/fisiologia , Macaca/fisiologia , Mamíferos , Camundongos , Primatas/fisiologia , Retina/fisiologia , Células Ganglionares da Retina/fisiologia , Sinapses/fisiologia
4.
Curr Biol ; 31(20): 4571-4583.e4, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34473948

RESUMO

Memory enables access to past experiences to guide future behavior. Humans can determine which memories to trust (high confidence) and which to doubt (low confidence). How memory retrieval, memory confidence, and memory-guided decisions are related, however, is not understood. In particular, how confidence in memories is used in decision making is unknown. We developed a spatial memory task in which rats were incentivized to gamble their time: betting more following a correct choice yielded greater reward. Rat behavior reflected memory confidence, with higher temporal bets following correct choices. We applied machine learning to identify a memory decision variable and built a generative model of memories evolving over time that accurately predicted both choices and confidence reports. Our results reveal in rats an ability thought to exist exclusively in primates and introduce a unified model of memory dynamics, retrieval, choice, and confidence.


Assuntos
Tomada de Decisões , Memória , Animais , Comportamento de Escolha , Ratos , Recompensa
5.
Am J Physiol Regul Integr Comp Physiol ; 318(4): R799-R812, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32130021

RESUMO

Sensing changes in blood oxygen content ([Formula: see text]) is an important physiological role of the kidney; however, the mechanism(s) by which the kidneys sense and respond to changes in [Formula: see text] are incompletely understood. Accurate measurements of kidney tissue oxygen tension ([Formula: see text]) may increase our understanding of renal oxygen-sensing mechanisms and could inform decisions regarding the optimal fluid for intravascular volume resuscitation to maintain renal perfusion. In some clinical settings, starch solution may be nephrotoxic, possibly due to inadequacy of tissue oxygen delivery. We hypothesized that hemodilution with starch colloid solutions would reduce [Formula: see text] to a more severe degree than other diluents. Anesthetized Sprague-Dawley rats (n = 77) were randomized to undergo hemodilution with either colloid (6% hydroxyethyl starch or 5% albumin), crystalloid (0.9% saline), or a sham procedure (control) (n = 13-18 rats/group). Data were analyzed by ANOVA with significance assigned at P < 0.05. After hemodilution, mean arterial pressure (MAP) decreased marginally in all groups, while hemoglobin (Hb) and [Formula: see text] decreased in proportion to the degree of hemodilution. Cardiac output was maintained in all groups after hemodilution. [Formula: see text] decreased in proportion to the reduction in Hb in all treatment groups. At comparably reduced Hb, and maintained arterial oxygen values, hemodilution with starch resulted in larger decreases in [Formula: see text] relative to animals hemodiluted with albumin or saline (P < 0.008). Renal medullary erythropoietin (EPO) mRNA levels increased more prominently, relative to other hypoxia-regulated molecules (GLUT-1, GAPDH, and VEGF). Our data demonstrate that the kidney acts as a biosensor of reduced [Formula: see text] following hemodilution and that [Formula: see text] may provide a quantitative signal for renal cellular responsiveness to acute anemia. Evidence of a more severe reduction in [Formula: see text] following hemodilution with starch colloid solution suggests that tissue hypoxia may contribute to starch induced renal toxicity.


Assuntos
Derivados de Hidroxietil Amido/farmacologia , Rim/metabolismo , Oxigênio/fisiologia , Albuminas , Animais , Coloides , Masculino , Consumo de Oxigênio , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Amido
6.
Neuron ; 105(4): 725-741.e8, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31864947

RESUMO

Memories of positive experiences link places, events, and reward outcomes. These memories recruit interactions between the hippocampus and nucleus accumbens (NAc). Both dorsal and ventral hippocampus (dH and vH) project to the NAc, but it remains unknown whether dH and vH act in concert or separately to engage NAc representations related to space and reward. We recorded simultaneously from the dH, vH, and NAc of rats during an appetitive spatial task and focused on hippocampal sharp-wave ripples (SWRs) to identify times of memory reactivation across brain regions. Here, we show that dH and vH awake SWRs occur asynchronously and activate distinct and opposing patterns of NAc spiking. Only NAc neurons activated during dH SWRs were tuned to task- and reward-related information. These temporally and anatomically separable hippocampal-NAc interactions point to distinct channels of mnemonic processing in the NAc, with the dH-NAc channel specialized for spatial task and reward information. VIDEO ABSTRACT.


Assuntos
Potenciais de Ação/fisiologia , Hipocampo/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Núcleo Accumbens/fisiologia , Animais , Hipocampo/citologia , Masculino , Rede Nervosa/citologia , Núcleo Accumbens/citologia , Ratos , Ratos Long-Evans , Sono/fisiologia
7.
J Vis Exp ; (152)2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31633681

RESUMO

Simultaneous recordings from large populations of individual neurons across distributed brain regions over months to years will enable new avenues of scientific and clinical development. The use of flexible polymer electrode arrays can support long-lasting recording, but the same mechanical properties that allow for longevity of recording make multiple insertions and integration into a chronic implant a challenge. Here is a methodology by which multiple polymer electrode arrays can be targeted to a relatively spatially unconstrained set of brain areas. The method utilizes thin-film polymer devices, selected for their biocompatibility and capability to achieve long-term and stable electrophysiologic recording interfaces. The resultant implant allows accurate and flexible targeting of anatomically distant regions, physical stability for months, and robustness to electrical noise. The methodology supports up to sixteen serially inserted devices across eight different anatomic targets. As previously demonstrated, the methodology is capable of recording from 1024 channels. Of these, the 512 channels in this demonstration used for single neuron recording yielded 375 single units distributed across six recording sites. Importantly, this method also can record single units for at least 160 days. This implantation strategy, including temporarily bracing each device with a retractable silicon insertion shuttle, involves tethering of devices at their target depths to a skull-adhered plastic base piece that is custom-designed for each set of recording targets, and stabilization/protection of the devices within a silicone-filled, custom-designed plastic case. Also covered is the preparation of devices for implantation, and design principles that should guide adaptation to different combinations of brain areas or array designs.


Assuntos
Eletrodos Implantados/normas , Fenômenos Eletrofisiológicos/fisiologia , Polímeros/normas , Animais , Ratos
8.
J Neurosci ; 39(42): 8275-8284, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619497

RESUMO

The overarching goal of the NIH BRAIN (Brain Research through Advancing Innovative Neurotechnologies) Initiative is to advance the understanding of healthy and diseased brain circuit function through technological innovation. Core principles for this goal include the validation and dissemination of the myriad innovative technologies, tools, methods, and resources emerging from BRAIN-funded research. Innovators, BRAIN funding agencies, and non-Federal partners are working together to develop strategies for making these products usable, available, and accessible to the scientific community. Here, we describe several early strategies for supporting the dissemination of BRAIN technologies. We aim to invigorate a dialogue with the neuroscience research and funding community, interdisciplinary collaborators, and trainees about the existing and future opportunities for cultivating groundbreaking research products into mature, integrated, and adaptable research systems. Along with the accompanying Society for Neuroscience 2019 Mini-Symposium, "BRAIN Initiative: Cutting-Edge Tools and Resources for the Community," we spotlight the work of several BRAIN investigator teams who are making progress toward providing tools, technologies, and services for the neuroscience community. These tools access neural circuits at multiple levels of analysis, from subcellular composition to brain-wide network connectivity, including the following: integrated systems for EM- and florescence-based connectomics, advances in immunolabeling capabilities, and resources for recording and analyzing functional connectivity. Investigators describe how the resources they provide to the community will contribute to achieving the goals of the NIH BRAIN Initiative. Finally, in addition to celebrating the contributions of these BRAIN-funded investigators, the Mini-Symposium will illustrate the broader diversity of BRAIN Initiative investments in cutting-edge technologies and resources.


Assuntos
Neurociências/métodos , Pesquisa , Tecnologia , Humanos
9.
J Neural Eng ; 16(6): 066021, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31216526

RESUMO

OBJECTIVE: Electrode arrays for chronic implantation in the brain are a critical technology in both neuroscience and medicine. Recently, flexible, thin-film polymer electrode arrays have shown promise in facilitating stable, single-unit recordings spanning months in rats. While array flexibility enhances integration with neural tissue, it also requires removal of the dura mater, the tough membrane surrounding the brain, and temporary bracing to penetrate the brain parenchyma. Durotomy increases brain swelling, vascular damage, and surgical time. Insertion using a bracing shuttle results in additional vascular damage and brain compression, which increase with device diameter; while a higher-diameter shuttle will have a higher critical load and more likely penetrate dura, it will damage more brain parenchyma and vasculature. One way to penetrate the intact dura and limit tissue compression without increasing shuttle diameter is to reduce the force required for insertion by sharpening the shuttle tip. APPROACH: We describe a novel design and fabrication process to create silicon insertion shuttles that are sharp in three dimensions and can penetrate rat dura, for faster, easier, and less damaging implantation of polymer arrays. Sharpened profiles are obtained by reflowing patterned photoresist, then transferring its sloped profile to silicon with dry etches. MAIN RESULTS: We demonstrate that sharpened shuttles can reliably implant polymer probes through dura to yield high quality single unit and local field potential recordings for at least 95 days. On insertion directly through dura, tissue compression is minimal. SIGNIFICANCE: This is the first demonstration of a rat dural-penetrating array for chronic recording. This device obviates the need for a durotomy, reducing surgical time and risk of damage to the blood-brain barrier. This is an improvement to state-of-the-art flexible polymer electrode arrays that facilitates their implantation, particularly in multi-site recording experiments. This sharpening process can also be integrated into silicon electrode array fabrication.


Assuntos
Encéfalo/fisiologia , Dura-Máter/fisiologia , Eletrodos Implantados , Desenho de Equipamento/métodos , Microtecnologia/métodos , Silício , Animais , Materiais Biocompatíveis , Desenho de Equipamento/instrumentação , Masculino , Microeletrodos , Microtecnologia/instrumentação , Ratos , Ratos Long-Evans
10.
Neuron ; 101(1): 21-31.e5, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30502044

RESUMO

The brain is a massive neuronal network, organized into anatomically distributed sub-circuits, with functionally relevant activity occurring at timescales ranging from milliseconds to years. Current methods to monitor neural activity, however, lack the necessary conjunction of anatomical spatial coverage, temporal resolution, and long-term stability to measure this distributed activity. Here we introduce a large-scale, multi-site, extracellular recording platform that integrates polymer electrodes with a modular stacking headstage design supporting up to 1,024 recording channels in freely behaving rats. This system can support months-long recordings from hundreds of well-isolated units across multiple brain regions. Moreover, these recordings are stable enough to track large numbers of single units for over a week. This platform enables large-scale electrophysiological interrogation of the fast dynamics and long-timescale evolution of anatomically distributed circuits, and thereby provides a new tool for understanding brain activity.


Assuntos
Encéfalo/fisiologia , Eletrodos Implantados/normas , Fenômenos Eletrofisiológicos/fisiologia , Rede Nervosa/fisiologia , Polímeros/normas , Animais , Eletrodos Implantados/tendências , Masculino , Ratos , Ratos Long-Evans
11.
Nat Rev Neurosci ; 19(12): 744-757, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30356103

RESUMO

Various cognitive functions have long been known to require the hippocampus. Recently, progress has been made in identifying the hippocampal neural activity patterns that implement these functions. One such pattern is the sharp wave-ripple (SWR), an event associated with highly synchronous neural firing in the hippocampus and modulation of neural activity in distributed brain regions. Hippocampal spiking during SWRs can represent past or potential future experience, and SWR-related interventions can alter subsequent memory performance. These findings and others suggest that SWRs support both memory consolidation and memory retrieval for processes such as decision-making. In addition, studies have identified distinct types of SWR based on representational content, behavioural state and physiological features. These various findings regarding SWRs suggest that different SWR types correspond to different cognitive functions, such as retrieval and consolidation. Here, we introduce another possibility - that a single SWR may support more than one cognitive function. Taking into account classic psychological theories and recent molecular results that suggest that retrieval and consolidation share mechanisms, we propose that the SWR mediates the retrieval of stored representations that can be utilized immediately by downstream circuits in decision-making, planning, recollection and/or imagination while simultaneously initiating memory consolidation processes.


Assuntos
Ondas Encefálicas/fisiologia , Hipocampo/fisiologia , Consolidação da Memória/fisiologia , Rememoração Mental/fisiologia , Animais , Humanos , Rede Nervosa/fisiologia
12.
Vis Neurosci ; 30(4): 175-82, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23834959

RESUMO

Retinal ganglion cells (RGCs), the output neurons of the retina, have axons that project via the optic nerve to diverse targets in the brain. Typically, RGC axons do not branch before exiting the retina and thus do not provide it with synaptic feedback. Although a small subset of RGCs with intraretinal axon collaterals has been previously observed in human, monkey, cat, and turtle, their function remains unknown. A small, more recently identified population of RGCs expresses the photopigment melanopsin. These intrinsically photosensitive retinal ganglion cells (ipRGCs) transmit an irradiance-coding signal to visual nuclei in the brain, contributing both to image-forming vision and to several nonimage-forming functions, including circadian photoentrainment and the pupillary light reflex. In this study, using melanopsin immunolabeling in monkey and a genetic method to sparsely label the melanopsin cells in mouse, we show that a subgroup of ipRGCs have axons that branch en route to the optic disc, forming intraretinal axon collaterals that terminate in the inner plexiform layer of the retina. The previously described collateral-bearing population identified by intracellular dye injection is anatomically indistinguishable from the collateral-bearing melanopsin cells identified here, suggesting they are a subset of the melanopsin-expressing RGC type and may therefore share its functional properties. Identification of an anatomically distinct subpopulation in mouse, monkey, and human suggests this pathway may be conserved in these and other species (turtle and cat) with intraretinal axon collaterals. We speculate that ipRGC axon collaterals constitute a likely synaptic pathway for feedback of an irradiance signal to modulate retinal light responses.


Assuntos
Axônios/fisiologia , Células Ganglionares da Retina/fisiologia , Células Amácrinas/fisiologia , Animais , Axônios/ultraestrutura , Antagonistas de Estrogênios/farmacologia , Retroalimentação Fisiológica/fisiologia , Macaca , Camundongos , Camundongos Endogâmicos C57BL , Disco Óptico/fisiologia , Disco Óptico/ultraestrutura , Células Ganglionares da Retina/ultraestrutura , Opsinas de Bastonetes/genética , Opsinas de Bastonetes/metabolismo , Opsinas de Bastonetes/fisiologia , Sinapses/fisiologia , Tamoxifeno/farmacologia , Vias Visuais/fisiologia
13.
Vis Neurosci ; 28(1): 29-37, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21156090

RESUMO

Parallel processing of visual information begins at the first synapse in the retina between the photoreceptors and bipolar cells. Ten bipolar cell types have been previously described in the primate retina: one rod and nine cone bipolar types. In this paper, we describe an 11th type of bipolar cell identified in Golgi-stained macaque retinal whole mount and vertical section. Axonal stratification depth, in addition to dendritic and axonal morphology, distinguished the "giant" cell from all previously well-recognized bipolar cell types. The giant bipolar cell had a very large and sparsely branched dendritic tree and a relatively large axonal arbor that costratified with the DB4 bipolar cell near the center of the inner plexiform layer. The sparseness of the giant bipolar's dendritic arbor indicates that, like the blue cone bipolar, it does not contact all the cones in its dendritic field. Giant cells contacting the same cones as midget bipolar cells, which are known to contact single long-wavelength (L) or medium-wavelength (M) cones, demonstrate that the giant cell does not exclusively contact short-wavelength (S) cones and, therefore, is not a variant of the previously described blue cone bipolar. This conclusion is further supported by measurement of the cone contact spacing for the giant bipolar. The giant cell contacts an average of about half the cones in its dendritic field (mean ± S.D. = 52 ± 17.6%; n = 6), with a range of 27-82%. The dendrites from single or neighboring giant cells that converge onto the same cones suggest that the giant cell may selectively target a subset of cones with a highly variable local density, such as the L or M cones.


Assuntos
Retina/fisiologia , Células Bipolares da Retina/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Animais , Axônios/fisiologia , Axônios/ultraestrutura , Contagem de Células , Tamanho Celular , Dendritos/fisiologia , Dendritos/ultraestrutura , Macaca , Macaca fascicularis , Vias Neurais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...