Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 15(12): 19310-19320, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34843199

RESUMO

The lifetime of transient electronic components can be programmed via the use of encapsulation/passivation layers or of on-demand, stimuli-responsive polymers (heat, light, or chemicals), but yet most research is limited to slow dissolution rate, hazardous constituents, or byproducts, or complicated synthesis of reactants. Here we present a physicochemical destruction system with dissolvable, nontoxic materials as an efficient, multipurpose platform, where chemically produced bubbles rapidly collapse device structures and acidic molecules accelerate dissolution of functional traces. Extensive studies of composites based on biodegradable polymers (gelatin and poly(lactic-co-glycolic acid)) and harmless blowing agents (organic acid and bicarbonate salt) validate the capability for the desired system. Integration with wearable/recyclable electronic components, fast-degradable device layouts, and wireless microfluidic devices highlights potential applicability toward versatile/multifunctional transient systems. In vivo toxicity tests demonstrate biological safety of the proposed system.


Assuntos
Eletrônica , Polímeros
2.
Sci Adv ; 6(46)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177091

RESUMO

Underactive bladder or detrusor underactivity (DUA), that is, not being able to micturate, has received less attention with little research and remains unknown or limited on pathological causes and treatments as opposed to overactive bladder, although the syndrome may pose a risk of urinary infections or life-threatening kidney damage. Here, we present an integrated expandable electronic and optoelectronic complex that behaves as a single body with the elastic, time-dynamic urinary bladder with substantial volume changes up to ~300%. The system configuration of the electronics validated by the theoretical model allows conformal, seamless integration onto the urinary bladder without a glue or suture, enabling precise monitoring with various electrical components for real-time status and efficient optogenetic manipulation for urination at the desired time. In vivo experiments using diabetic DUA models demonstrate the possibility for practical uses of high-fidelity electronics in clinical trials associated with the bladder and other elastic organs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...