Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37110946

RESUMO

Photoelectrochemical (PEC) H2 production from water using solar energy is an ideal and environmentally friendly process. CuInS2 is a p-type semiconductor that offers many advantages for PEC H2 production. Therefore, this review summarizes studies on CuInS2-based PEC cells designed for H2 production. The theoretical background of PEC H2 evolution and properties of the CuInS2 semiconductor are initially explored. Subsequently, certain important strategies that have been executed to improve the activity and charge-separation characteristics of CuInS2 photoelectrodes are examined; these include CuInS2 synthesis methods, nanostructure development, heterojunction construction, and cocatalyst design. This review helps enhance the understanding of state-of-the-art CuInS2-based photocathodes to enable the development of superior equivalents for efficient PEC H2 production.

2.
Angew Chem Int Ed Engl ; 62(7): e202215227, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36542061

RESUMO

The electrochemical activation of CuInS2 /MoSx for photoelectrochemical (PEC) H2 production was revealed for the first time through in operando Raman spectroscopy. During the activation process, the initial metallic MoSx phase was transformed to semiconducting MoSx , which facilitates charge carrier transfer between CuInS2 and MoSx . Ex situ X-ray photoelectron spectroscopy and Raman spectroscopy suggest the existence of MoO3 after the activation process. However, apart from contradicting these results, in operando Raman spectroscopy revealed some of the intermediate steps of the activation process.

3.
ACS Appl Mater Interfaces ; 13(49): 58447-58457, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34450006

RESUMO

An atomic gradient passivation layer, (Ta,Mo)x(O,S)y, is designed to improve the charge transportation and photoelectrochemical activity of CuInS2-based photoelectrodes. We found that Mo spontaneously diffused to the a-TaOx layer during e-beam evaporation. This result indicates that the gradient profile of MoOx/TaOx is formed in the sublayer of (Ta,Mo)x(O,S)y. To understand the atomic-gradation effects of the (Ta,Mo)x(O,S)y passive layer, the composition and (photo)electrochemical properties have been characterized in detail. When this atomic gradient-passive layer is applied to CuInS2-based photocathodes, promising photocurrent and onset potential are seen without using Pt cocatalysts. This is one of the highest activities among reported CuInS2 photocathodes, which are not combined with noble metal cocatalysts. Excellent photoelectrochemical activity of the photoelectrode can be mainly achieved by (1) the electron transient time improved due to the conductive Mo-incorporated TaOx layer and (2) the boosted electrocatalytic activity by Mox(O,S)y formation.

4.
ChemSusChem ; 13(24): 6651-6659, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33119209

RESUMO

An inorganic p-type CuInS2 semiconductor was combined with the semiconducting polymer of PNDI3OT-Se1 and PNDI3OT-Se2 with different HOMO/LUMO levels for photoelectrochemical hydrogen production. Charge transfer behaviors at polymer/CuInS2 junctions were investigated by electrochemical impedance spectroscopy. The heterojunction of p-CuInS2 and n-type polymer (both PNDI3OT-Se1 and Se2) successfully made p-n junctions and showed improved charge transfer. However, we found that higher HOMO levels of polymer than valence band maximum (VBM) of CuInS2 spurred charge recombination at interfaces. As a result, CuInS2 /PNDI3OT-Se1/TiO2 /Pt, which has suitable energy levels matched between PNDI3OT-Se1 and CuInS2 , shows photocurrent (-15.67 mA cm-2 ) improved concretely when compared to a CuInS2 /TiO2 /Pt photoelectrode (-7.11 mA cm-2 ) at 0.0 V vs. RHE applied potential. Additionally, the photoelectrochemical stability of CuInS2 /PNDI3OT-Se1/TiO2 /Pt photoelectrode was also investigated.

5.
Angew Chem Int Ed Engl ; 58(46): 16395-16399, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31454460

RESUMO

Electrochemical and photoelectrochemical CO2 reductions were carried out with Re(bh-bipy)(CO)3 (OH2 ) cocatalysts in aqueous electrolytes. Competition between hydrogen evolution and CO2 reduction was observed under (photo)electrochemical conditions for both glassy carbon and CuInS2 electrodes. The partial current density for CO generation is limited even though the additional potential is applied. However, electrochemical hydrogen evolution was suppressed under photoelectrochemical conditions, and the selectivity and partial current density for CO were considerably increased when compared to the electrochemical reduction in an identical electrode/electrolyte system. This finding may provide insights into using semiconductor/liquid junctions for solar fuel devices to overcome the limitations of electrolysis systems with an external bias.

6.
ACS Appl Mater Interfaces ; 9(23): 19780-19790, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28530789

RESUMO

Recently, the WO3/BiVO4 heterojunction has shown promising photoelectrochemical (PEC) water splitting activity based on its charge transfer and light absorption capability, and notable enhancement of the photocurrent has been achieved via morphological modification of WO3. We developed a graft copolymer-assisted protocol for the synthesis of WO3 mesoporous thin films on a transparent conducting electrode, wherein the particle size, particle shape, and thickness of the WO3 layer were controlled by tuning the interactions in the polymer/sol-gel hybrid. The PEC performance of the WO3 mesoporous photoanodes with various morphologies and the individual heterojunctions with BiVO4 (WO3/BiVO4) were characterized by measuring the photocurrents in the absence/presence of hole scavengers using light absorption spectroscopy and intensity-modulated photocurrent spectroscopy. The morphology of the WO3 photoanode directly influenced the charge separation efficiency within the WO3 layer and concomitant charge collection efficiency in the WO3/BiVO4 heterojunction, showing the smaller sized nanosphere WO3 layer showed higher values than did the plate-like or rod-like one. Notably, we observed that photocurrent density of WO3/BiVO4 was not dependent on the thickness of WO3 film or its charge collection time, implying slow charge flow from BiVO4 to WO3 can be a crucial issue in determining the photocurrent, rather than the charge separation within the nanosphere WO3 layer.

7.
J Am Chem Soc ; 138(48): 15673-15681, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27934030

RESUMO

Chalcopyrite Cu(In,Ga)(Se,S)2 (CIGS) semiconductors are potential candidates for use in photoelectrochemical (PEC) hydrogen generation due to their excellent optical absorption properties and high conduction band edge position. In the present research, CIGS thin film was successfully prepared on a transparent substrate (F:SnO2 glass) using a solution-based process and applied for a photocathode in solar water splitting, which shows control of the surface state associated with sulfurization/selenization process significantly influences on the PEC activity. A ZnS passivation surface layer was introduced, which effectively suppresses charge recombination by surface states of CIGS. The CIGS/ZnS/Pt photocathode exhibited highly enhanced PEC activity (∼24 mA·cm-2 at -0.3 V vs RHE). The performances of our CIGS photocathode on the transparent substrate were also characterized under front/back light illumination, and the incident photon to current conversion efficiency (IPCE) drastically changed depending on the illumination directions showing decreased IPCE especially under UV region with back illumination. The slow minority carrier (electron) transportation is suggested as a limiting factor for the PEC activity of the CIGS photocathode.

8.
Sci Rep ; 6: 30868, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27489138

RESUMO

UNLABELLED: A highly stable monolithic tandem solar cell was developed by combining the heterogeneous photovoltaic technologies of dye-sensitized solar cell (DSSC) and solution-processed CuInxGa1-xSeyS1-y (CIGS) thin film solar cells. The durability of the tandem cell was dramatically enhanced by replacing the redox couple from to [Co(bpy)3](2+) /[Co(bpy)3](3+)), accompanied by a well-matched counter electrode ( PEDOT: PSS) and sensitizer (Y123). A 1000 h durability test of the DSSC/CIGS tandem solar cell in ambient conditions resulted in only a 5% decrease in solar cell efficiency. Based on electrochemical impedance spectroscopy and photoelectrochemical cell measurement, the enhanced stability of the tandem cell is attributed to minimal corrosion by the cobalt-based polypyridine complex redox couple.

9.
Sci Rep ; 6: 20103, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26857963

RESUMO

Using a simple hydrothermal synthesis, the crystal structure of TiO2 nanoparticles was controlled from rutile to anatase using a sugar alcohol, D-sorbitol. Adding small amounts of D-sorbitol to an aqueous TiCl4 solution resulted in changes in the crystal phase, particle size, and surface area by affecting the hydrolysis rate of TiCl4. These changes led to improvements of the solar-to-electrical power conversion efficiency (η) of dye-sensitized solar cells (DSSC) fabricated using these nanoparticles. A postulated reaction mechanism concerning the role of D-sorbitol in the formation of rutile and anatase was proposed. Fourier-transform infrared spectroscopy, (13)C NMR spectroscopy, and dynamic light scattering analyses were used to better understand the interaction between the Ti precursor and D-sorbitol. The crystal phase and size of the synthesized TiO2 nanocrystallites as well as photovoltaic performance of the DSSC were examined using X-ray diffraction, Raman spectroscopy, field-emission scanning electron microscopy, high-resolution transmission electron microscopy, and photocurrent density-applied voltage spectroscopy measurement techniques. The DSSC fabricated using the anatase TiO2 nanoparticles synthesized in the presence of D-sorbitol, exhibited an enhanced η (6%, 1.5-fold improvement) compared with the device fabricated using the rutile TiO2 synthesized without D-sorbitol.

10.
Chemphyschem ; 16(18): 3959-65, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26472540

RESUMO

By using a radio-frequency sputtering method, we synthesized large-area, uniform, and transparent molybdenum disulfide film electrodes (1, 3, 5, and 7 min) on transparent and conducting fluorine-doped tin oxide (FTO), as ecofriendly, cost-effective counter electrodes (CE) for dye-sensitized solar cells (DSSCs). These CEs were used in place of the routinely used expensive platinum CEs for the catalytic reduction of a triiodide electrolyte. The structure and morphology of the MoS2 was analyzed by using Raman spectroscopy, X-ray diffraction, and X-ray photoemission spectroscopy measurements and the DSSC characteristics were investigated. An unbroken film of MoS2 was identified on the FTO crystallites from field-emission scanning electron microscopy. Cyclic voltammetry, electrochemical impedance spectroscopy, and Tafel curve measurements reveal the promise of MoS2 as a CE with a low charge-transfer resistance, high electrocatalytic activity, and fast reaction kinetics for the reduction of triiodide to iodide. Finally, an optimized transparent MoS2 CE, obtained after 5 min synthesis time, showed a high power-conversion efficiency of 6.0 %, which comparable to the performance obtained with a Pt CE (6.6 %) when used in TiO2 -based DSCCs, thus signifying the importance of sputtering time on DSSC performance.

11.
ACS Appl Mater Interfaces ; 7(10): 5788-96, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25720751

RESUMO

BiVO4 has been formed into heterojunctions with other metal oxide semiconductors to increase the efficiency for solar water oxidation. Here, we suggest that heterojunction photoanodes of Si and BiVO4 can also increase the efficiency of charge separation and reduce the onset potential of the photocurrent by utilizing the high conduction band edge potential of Si in a dual-absorber system. We found that a thin TiO2 interlayer is required in this structure to realize the suggested photocurrent density enhancement and shifts in onset potential. Si/TiO2/BiVO4 photoanodes showed 1.0 mA/cm(2) at 1.23 V versus the reversible hydrogen electrode (RHE) with 0.11 V (vs RHE) of onset potential, which were a 3.3-fold photocurrent density enhancement and a negative shift in onset potential of 300 mV compared to the performance of FTO/BiVO4 photoanodes.

12.
Phys Chem Chem Phys ; 17(12): 7714-9, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25711207

RESUMO

We prepared TiO2 nanorod (NR) arrays on a fluorine-doped tin oxide substrate and decorated with graphene oxide (GO) to study their photoelectrochemical (PEC) water oxidation activities in two different electrolytes. The PEC performances of GO-decorated TiO2 NR photoanodes were characterized by optical and electrochemical impedance spectroscopy measurements. In 1 M KOH, the photocurrent density of the TiO2 NR film decreased after deposition of GO, while in the neutral pH electrolyte (phosphate buffered 0.5 M Na2SO4), the TiO2 NR photoanode showed enhanced performance after deposition with the 2 wt% GO solution. This was a consequence of the decrease in charge transfer resistance between the electrode surface and the electrolyte. The improvement of photocurrents by GO decoration was obvious near the onset potential of the photocurrents in the neutral pH electrolyte. These opposite contributions of GO on the TiO2 NR photoanodes suggest that GO can promote water oxidation effectively in a neutral electrolyte because depending on the pH of the electrolyte, different chemical species interact with the surface of the photoanode in the water oxidation reaction.

13.
Dalton Trans ; 44(7): 3075-81, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25567364

RESUMO

A SnO2 nanocrystallite-based photoanode was prepared using tin (iv) chloride and fructose via a one-pot hydrothermal method, and its structural and morphological properties were studied. Structural observations revealed tetragonal crystals of SnO2, and morphological studies confirmed the presence of spherical nanoparticulates. Furthermore, encapsulating the surface of the SnO2 photoanode (+N719 dye) with thin layers of La2O3 significantly improved the short-circuit current density, open-circuit voltage, fill factor and power conversion efficiency values from 8.30 to 13.70 mA cm(-2), 0.40 to 0.46 V, 49% to 48% and 1.66% to 3.0%, respectively. The nearly two-fold improvement in energy conversion efficiency was attributed to: (a) increased dye molecules caused by the formation of strong co-ordination bonds between the dye molecules and the lanthanide, (b) enhanced photoelectron transfer rate between the dye molecules and SnO2 conduction band, and (c) negative shift of SnO2 conduction band position in the presence of La2O3 (confirmed from the Mott-Schottky and Tafel measurements).

14.
Dalton Trans ; 42(28): 10085-8, 2013 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-23728440

RESUMO

A core-shell photoanode, composed of a monoclinic WO3 nanorods core encapsulated with a rutile TiO2 nanoparticles shell, reveals ~246% enhancement in power conversion efficiency due to improved current density and open circuit voltage values and longer-lived charge carriers.

15.
J Colloid Interface Sci ; 402: 94-9, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23647694

RESUMO

The photoefficiency of CdS/TiO2 electrodes can be enhanced by employing efficient method of CdS sensitization from which, the contact area, thickness of CdS layer, and the recombination of photoelectrons with electrolyte can be controlled. Here, we demonstrate a simple solvothermal approach of CdS quantum dots (QDs) sensitization on TiO2 nanoparticle (NP) film coated on FTO. Our new approach prevents the clogging of CdS QDs and promotes uniform deposition of QDs throughout the mesoporous TiO2 NP film. The sensitization of CdS can be controlled by the reaction time and the concentration of the precursors. The solvothermally sensitized photoanodes exhibit enhanced photocurrents and fill factors and improved photostability in aqueous solution compared to the one prepared by a conventional SILAR method. Open-circuit potential decay measurement under shutting off illumination shows that the lifetime of photoelectron is extended with solvothermally prepared CdS layer, indicating efficient suppression of recombination of the accumulated electron in TiO2 to the electrolyte. This methodology can be applied in making more efficient heterojunctions consisting of CdS and other wide band gap oxide semiconductors which could improve charge separation and mitigate charge recombination for photoelectrochemical applications.

16.
Chem Commun (Camb) ; 49(28): 2921-3, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23459589

RESUMO

Electron lifetime in mesoporous nanostructured rutile TiO2 photoanodes, synthesized via a simple, cost-effective, low temperature (50-55 °C) wet chemical process, annealed at 350 °C for 1 h and not employing any sprayed TiO2 compact layer, was successfully tailored with 0.2 mM TiCl4 surface treatment that resulted in light to electric power conversion efficiency up to 4.4%.

17.
Nanotechnology ; 21(10): 105603, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20160342

RESUMO

We report for the first time, using a simple and environmentally benign chemical method, the low temperature synthesis of densely populated upright-standing rutile TiO(2) nanoplate films onto a glass substrate from a mixture of titanium trichloride, hydrogen peroxide and thiourea in triply distilled water. The rutile TiO(2) nanoplate films (the phase is confirmed from x-ray diffraction analysis, selected area electron diffraction, energy-dispersive x-ray analysis, and Raman shift) are 20-35 nm wide and 100-120 nm long. The chemical reaction kinetics for the growth of these upright-standing TiO(2) nanoplate films is also interpreted. Films of TiO(2) nanoplates are optically transparent in the visible region with a sharp absorption edge close to 350 nm, confirming an indirect band gap energy of 3.12 eV. The Brunauer-Emmet-Teller surface area, Barret-Joyner-Halenda pore volume and pore diameter, obtained from N(2) physisorption studies, are 82 m(2) g(-1), 0.0964 cm(3) g(-1) and 3.5 nm, respectively, confirming the mesoporosity of scratched rutile TiO(2) nanoplate powder that would be ideal for the direct fabrication of nanoscaled devices including upcoming dye-sensitized solar cells and gas sensors.

18.
J Hazard Mater ; 177(1-3): 216-21, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20034741

RESUMO

In order to enhance the photocatalytic activity of TiO(2), the recombination of photogenerated electron-hole pairs needs to be suppressed. Noble metals, e.g. Au nanoparticles, have been incorporated with TiO(2) to efficiently separate charge carriers created in/on TiO(2). On the other hand, dissolved oxygen (DO) in an aqueous solution was also known to scavenge the electrons, which avoid the recombination of electrons and holes. In this study, we investigated the combined system of Au nanoparticles incorporated with TiO(2) and DO to gain insight into the relationship between them using a photocatalytic degradation of 1,4-dioxane. The rate constants of 1,4-dioxane photodegradation with respect to TiO(2) catalysts with three different Au loadings, as well as DO levels, indicated the DO dependency is disproportional to the Au loading amount, implying that there is an overlapping function in capturing electrons between Au nanoparticles and DO.


Assuntos
Dioxanos/química , Nanopartículas Metálicas/química , Oxigênio/química , Titânio/química , Catálise , Elétrons , Ouro , Cinética , Processos Fotoquímicos , Água
19.
J Chem Phys ; 130(11): 111101, 2009 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-19317523

RESUMO

A heterojunction solar cell design composed of poly(3-hexylthiophene) (P3HT) and intercalated indium-tin-oxide (ITO) donor-acceptor system is explored for the first time. Substantial change in band edge of ITO is noticed after intercalation. Structural and surface morphological studies are reported. Due to tuned band gap of ITO, an increase in short circuit current from 0.0012 to 0.46 mA/cm(2), fill factor from 0.39 to 0.51, and power conversion efficiency from 0.000 367 to 0.3% is obtained for heterojunction solar cell when compared to P3HT alone. This novel, room temperature design approach would be of great scientific interest in current solid-state solar cell scenario.

20.
Micron ; 38(1): 85-90, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-16931031

RESUMO

In this communication, TiO2 nanocrystalline thin films synthesized by a room temperature (27 degrees C) chemical dip process. To our knowledge, this is first report of the preparation of nanoscale rutile TiO2 particles from common inorganic salt at such low temperature. Interestingly, unprecedented dynamic color change accompanies with titanium dioxide grain size, which can be seen with the naked eye that generated curiosity in our mind to check UV-vis absorption, where significant changes were observed. The room temperature synthesized thin films of rutile titanium dioxide make it a potential candidate for high-compatibility material, which can be used in artificial heart valves.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...