Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JACC Adv ; 3(2): 100772, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38939383

RESUMO

Background: The number of patients with an arterial switch operation (ASO) for transposition of the great arteries (TGA) is steadily growing; limited information is available regarding the clinical course in the current era. Objectives: The purpose was to describe clinical outcome late after ASO in a national cohort, including survival, rates of (re-)interventions, and clinical events. Methods: A total of 1,061 TGA-ASO patients (median age 10.7 years [IQR: 2.0-18.2 years]) from a nationwide prospective registry with a median follow-up of 8.0 years (IQR: 5.4-8.8 years) were included. Using an analysis with age as the primary time scale, cumulative incidence of survival, (re)interventions, and clinical events were determined. Results: At the age of 35 years, late survival was 93% (95% CI: 88%-98%). The cumulative re-intervention rate at the right ventricular outflow tract and pulmonary branches was 36% (95% CI: 31%-41%). Other cumulative re-intervention rates at 35 years were on the left ventricular outflow tract (neo-aortic root and valve) 16% (95% CI: 10%-22%), aortic arch 9% (95% CI: 5%-13%), and coronary arteries 3% (95% CI: 1%-6%). Furthermore, 11% (95% CI: 6%-16%) of the patients required electrophysiological interventions. Clinical events, including heart failure, endocarditis, and myocardial infarction occurred in 8% (95% CI: 5%-11%). Independent risk factors for any (re-)intervention were TGA morphological subtype (Taussig-Bing double outlet right ventricle [HR: 4.9, 95% CI: 2.9-8.1]) and previous pulmonary artery banding (HR: 1.6, 95% CI: 1.0-2.2). Conclusions: TGA-ASO patients have an excellent survival. However, their clinical course is characterized by an ongoing need for (re-)interventions, especially on the right ventricular outflow tract and the left ventricular outflow tract indicating a strict lifelong surveillance, also in adulthood.

2.
Catheter Cardiovasc Interv ; 103(6): 943-948, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38577955

RESUMO

BACKGROUND: Unilateral pulmonary artery (PA) stenosis is common in the transposition of the great arteries (TGA) after arterial switch operation (ASO) but the effects on the right ventricle (RV) remain unclear. AIMS: To assess the effects of unilateral PA stenosis on RV afterload and function in pediatric patients with TGA-ASO. METHODS: In this retrospective study, eight TGA patients with unilateral PA stenosis underwent heart catheterization and cardiac magnetic resonance (CMR) imaging. RV pressures, RV afterload (arterial elastance [Ea]), PA compliance, RV contractility (end-systolic elastance [Ees]), RV-to-PA (RV-PA) coupling (Ees/Ea), and RV diastolic stiffness (end-diastolic elastance [Eed]) were analyzed and compared to normal values from the literature. RESULTS: In all TGA patients (mean age 12 ± 3 years), RV afterload (Ea) and RV pressures were increased whereas PA compliance was reduced. RV contractility (Ees) was decreased resulting in RV-PA uncoupling. RV diastolic stiffness (Eed) was increased. CMR-derived RV volumes, mass, and ejection fraction were preserved. CONCLUSION: Unilateral PA stenosis results in an increased RV afterload in TGA patients after ASO. RV remodeling and function remain within normal limits when analyzed by CMR but RV pressure-volume loop analysis shows impaired RV diastolic stiffness and RV contractility leading to RV-PA uncoupling.


Assuntos
Transposição das Grandes Artérias , Cateterismo Cardíaco , Artéria Pulmonar , Estenose de Artéria Pulmonar , Transposição dos Grandes Vasos , Função Ventricular Direita , Adolescente , Criança , Feminino , Humanos , Masculino , Transposição das Grandes Artérias/efeitos adversos , Complacência (Medida de Distensibilidade) , Contração Miocárdica , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/diagnóstico por imagem , Estudos Retrospectivos , Estenose de Artéria Pulmonar/fisiopatologia , Estenose de Artéria Pulmonar/diagnóstico por imagem , Estenose de Artéria Pulmonar/etiologia , Volume Sistólico , Transposição dos Grandes Vasos/fisiopatologia , Transposição dos Grandes Vasos/cirurgia , Transposição dos Grandes Vasos/complicações , Transposição dos Grandes Vasos/diagnóstico por imagem , Resultado do Tratamento , Rigidez Vascular , Disfunção Ventricular Direita/fisiopatologia , Disfunção Ventricular Direita/etiologia , Disfunção Ventricular Direita/diagnóstico por imagem , Pressão Ventricular
3.
Cardiol Young ; 34(3): 473-482, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38258453

RESUMO

BACKGROUND: Branch pulmonary artery stenosis is common after surgical repair in patients with biventricular CHD and often requires reinterventions. However, (long-term) effects of percutaneous branch pulmonary artery interventions on exercise capacity, right ventricular function, and lung perfusion remain unclear. This review describes the (long-term) effects of percutaneous branch pulmonary artery interventions on exercise capacity, right ventricular function, and lung perfusion following PRISMA guidelines. METHODS: We performed a systematic search in PubMed, Embase, and Cochrane including studies about right ventricular function, exercise capacity, and lung perfusion after percutaneous branch pulmonary artery interventions. Study selection, data extraction, and quality assessment were performed by two researchers independently. RESULTS: In total, 7 eligible studies with low (n = 2) and moderate (n = 5) risk of bias with in total 330 patients reported on right ventricular function (n = 1), exercise capacity (n = 2), and lung perfusion (n = 7). Exercise capacity and lung perfusion seem to improve after a percutaneous intervention for branch pulmonary artery stenosis. No conclusions about right ventricular function or remodelling, differences between balloon and stent angioplasty or specific CHD populations could be made. CONCLUSION: Although pulmonary artery interventions are frequently performed in biventricular CHD, data on relevant outcome parameters such as exercise capacity, lung perfusion, and right ventricular function are largely lacking. An increase in exercise capacity and improvement of lung perfusion to the affected lung has been described in case of mild to more severe pulmonary artery stenosis during relatively short follow-up. However, there is need for future studies to evaluate the effect of pulmonary artery interventions in various CHD populations.


Assuntos
Artéria Pulmonar , Estenose de Artéria Pulmonar , Humanos , Artéria Pulmonar/cirurgia , Estenose de Artéria Pulmonar/cirurgia , Função Ventricular Direita , Tolerância ao Exercício , Pulmão , Perfusão
4.
Eur Heart J Case Rep ; 7(12): ytad583, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38046648

RESUMO

Background: In repaired tetralogy of Fallot (ToF) patients with residual right ventricular (RV) outflow tract obstructions (RVOTO), risk stratification and timing of re-interventions are based on RVOTO gradients. However, this might be insufficient to prevent RV dysfunction. Instead, assessment of RV to pulmonary arterial (RV-PA) coupling allows integrated assessment of RV function in relationship to its afterload and could be of additional value in clinical decision-making. Case summary: Two patients with repaired ToF and residual RVOTO without pulmonary regurgitation underwent right heart catheterization (RHC) and cardiac magnetic resonance imaging. We determined RV end-systolic elastance (Ees), arterial elastance (Ea) and RV-PA coupling (Ees/Ea) using single-beat RV pressure-volume analysis. Patient 1 was asymptomatic despite severely increased RV pressures and a left pulmonary artery (LPA) stenosis (invasive gradient 20 mmHg). Right ventricular volumes and function were preserved. The Ea and Ees were increased but RV-PA coupling was relatively maintained. Of interest, RV end-diastolic pressure and RV diastolic stiffness were increased. After LPA plasty, RV function was preserved during long-term follow-up. Patient 2 was symptomatic despite mildly elevated RV pressures and a supravalvular RV-PA conduit stenosis (invasive gradient 30 mmHg). The RV showed severe RV dilatation and dysfunction. The Ea was increased but Ees was decreased leading to RV-PA uncoupling. Despite balloon angioplasty, RV function was unchanged during long-term follow-up. Discussion: Development of RV dysfunction might be insufficiently predicted by RVOTO severity in patients with repaired ToF. Assessment of RV remodelling and function in relationship to its afterload might help to optimize risk stratification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...