Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ambio ; 53(7): 970-983, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38696060

RESUMO

The EU Nature Restoration Law (NRL) is critical for the restoration of degraded ecosystems and active afforestation of degraded peatlands has been suggested as a restoration measure under the NRL. Here, we discuss the current state of scientific evidence on the climate mitigation effects of peatlands under forestry. Afforestation of drained peatlands without restoring their hydrology does not fully restore ecosystem functions. Evidence on long-term climate benefits is lacking and it is unclear whether CO2 sequestration of forest on drained peatland can offset the carbon loss from the peat over the long-term. While afforestation may offer short-term gains in certain cases, it compromises the sustainability of peatland carbon storage. Thus, active afforestation of drained peatlands is not a viable option for climate mitigation under the EU Nature Restoration Law and might even impede future rewetting/restoration efforts. Instead, restoring hydrological conditions through rewetting is crucial for effective peatland restoration.


Assuntos
Conservação dos Recursos Naturais , União Europeia , Agricultura Florestal , Solo , Conservação dos Recursos Naturais/legislação & jurisprudência , Conservação dos Recursos Naturais/métodos , Agricultura Florestal/legislação & jurisprudência , Agricultura Florestal/métodos , Solo/química , Florestas , Sequestro de Carbono , Recuperação e Remediação Ambiental/métodos , Mudança Climática , Ecossistema , Áreas Alagadas
5.
Ambio ; 52(9): 1519-1528, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37222914

RESUMO

Peatlands are among the world's most carbon-dense ecosystems and hotspots of carbon storage. Although peatland drainage causes strong carbon emissions, land subsidence, fires and biodiversity loss, drainage-based agriculture and forestry on peatland is still expanding on a global scale. To maintain and restore their vital carbon sequestration and storage function and to reach the goals of the Paris Agreement, rewetting and restoration of all drained and degraded peatlands is urgently required. However, socio-economic conditions and hydrological constraints hitherto prevent rewetting and restoration on large scale, which calls for rethinking landscape use. We here argue that creating integrated wetscapes (wet peatland landscapes), including nature preserve cores, buffer zones and paludiculture areas (for wet productive land use), will enable sustainable and complementary land-use functions on the landscape level. As such, transforming landscapes into wetscapes presents an inevitable, novel, ecologically and socio-economically sound alternative for drainage-based peatland use.


Assuntos
Ecossistema , Áreas Alagadas , Agricultura , Biodiversidade , Carbono , Solo
6.
Nature ; 614(7947): 281-286, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36755174

RESUMO

Wetlands have long been drained for human use, thereby strongly affecting greenhouse gas fluxes, flood control, nutrient cycling and biodiversity1,2. Nevertheless, the global extent of natural wetland loss remains remarkably uncertain3. Here, we reconstruct the spatial distribution and timing of wetland loss through conversion to seven human land uses between 1700 and 2020, by combining national and subnational records of drainage and conversion with land-use maps and simulated wetland extents. We estimate that 3.4 million km2 (confidence interval 2.9-3.8) of inland wetlands have been lost since 1700, primarily for conversion to croplands. This net loss of 21% (confidence interval 16-23%) of global wetland area is lower than that suggested previously by extrapolations of data disproportionately from high-loss regions. Wetland loss has been concentrated in Europe, the United States and China, and rapidly expanded during the mid-twentieth century. Our reconstruction elucidates the timing and land-use drivers of global wetland losses, providing an improved historical baseline to guide assessment of wetland loss impact on Earth system processes, conservation planning to protect remaining wetlands and prioritization of sites for wetland restoration4.


Assuntos
Recursos Naturais , Análise Espaço-Temporal , Áreas Alagadas , Humanos , Biodiversidade , China , Europa (Continente) , Recursos Naturais/provisão & distribuição , Estados Unidos , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI
7.
Science ; 376(6593): eabn1479, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35511964

RESUMO

Biogeomorphic wetlands cover 1% of Earth's surface but store 20% of ecosystem organic carbon. This disproportional share is fueled by high carbon sequestration rates and effective storage in peatlands, mangroves, salt marshes, and seagrass meadows, which greatly exceed those of oceanic and forest ecosystems. Here, we review how feedbacks between geomorphology and landscape-building vegetation underlie these qualities and how feedback disruption can switch wetlands from carbon sinks into sources. Currently, human activities are driving rapid declines in the area of major carbon-storing wetlands (1% annually). Our findings highlight the urgency to stop through conservation ongoing losses and to reestablish landscape-forming feedbacks through restoration innovations that recover the role of biogeomorphic wetlands as the world's biotic carbon hotspots.


Assuntos
Ecossistema , Áreas Alagadas , Carbono , Sequestro de Carbono , Retroalimentação , Humanos
8.
Ambio ; 50(11): 2038-2049, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33677811

RESUMO

Peatlands cover 3% of the land, occur in 169 countries, and have-by sequestering 600 Gt of carbon-cooled the global climate by 0.6 °C. After a general review about peatlands worldwide, this paper describes the importance of the Great Vasyugan Mire and presents suggestions about its protection and future research. The World's largest peatland, the Great Vasyugan Mire in West-Siberia, forms the border between the Taiga and the Forest-Steppe biomes and harbours rare species and mire types and globally unique self-organizing patterns. Current oil and gas exploitation may arguably be largely phased out by 2050, which will pave the way for a stronger focus on the mire's role in buffering climate change, maintaining ecosystem diversity, and providing other ecosystem services. Relevant new research lines will benefit from the extensive data sets that earlier studies have gathered for other purposes. Its globally unique character as the 'largest life form on land' qualifies the Great Vasyugan Mire in its entirety to be designated as a UNESCO World Heritage Site and a Ramsar Wetland of International Importance.


Assuntos
Ecossistema , Solo , Mudança Climática , Florestas , Áreas Alagadas
9.
New Phytol ; 229(2): 861-876, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32910470

RESUMO

Sphagnum farming can substitute peat with renewable biomass and thus help mitigate climate change. Large volumes of the required founder material can only be supplied sustainably by axenic cultivation in bioreactors. We established axenic in vitro cultures from sporophytes of 19 Sphagnum species collected in Austria, Germany, Latvia, the Netherlands, Russia, and Sweden: S. angustifolium, S. balticum, S. capillifolium, S. centrale, S. compactum, S. cuspidatum, S. fallax, S. fimbriatum, S. fuscum, S. lindbergii, S. medium/divinum, S. palustre, S. papillosum, S. rubellum, S. russowii, S. squarrosum, S. subnitens, S. subfulvum and S. warnstorfii. These species cover five of the six European Sphagnum subgenera; namely, Acutifolia, Cuspidata, Rigida, Sphagnum and Squarrosa. Their growth was measured in suspension cultures, whereas their ploidy was determined by flow cytometry and compared with the genome size of Physcomitrella patens. We identified haploid and diploid Sphagnum species, found that their cells are predominantly arrested in the G1 phase of the cell cycle, and did not find a correlation between plant productivity and ploidy. DNA barcoding was achieved by sequencing introns of the BRK1 genes. With this collection, high-quality founder material for diverse large-scale applications, but also for basic Sphagnum research, is available from the International Moss Stock Center.


Assuntos
Sphagnopsida , Áustria , Biologia , Biotecnologia , Alemanha , Federação Russa , Suécia
10.
Sci Total Environ ; 726: 138470, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32315847

RESUMO

The agricultural use of drained peatlands leads to huge emissions of greenhouse gases and nutrients. A land-use alternative that allows rewetting of drained peatland while maintaining agricultural production is the cultivation of Sphagnum biomass as a renewable substitute for fossil peat in horticultural growing media (Sphagnum farming). We studied Sphagnum productivity and nutrient dynamics during two years in two Sphagnum farming sites in NW Germany, which were established on drained bog grassland by sod removal, rewetting, and the introduction of Sphagnum fragments in 2011 and 2016, respectively. We found a considerable and homogeneous production of Sphagnum biomass (>3.6 ton DW ha--1 yr-1), attributable to the high nutrient levels, low alkalinity, and even distribution of the irrigation water. The ammonium legacy from former drainage-based agriculture rapidly declined after rewetting, while nutrient mobilization was negligible. CH4 concentrations in the rewetted soil quickly decreased to very low levels. The Sphagnum biomass sequestered high loads of nutrients (46.0 and 47.4 kg N, 3.9 and 4.9 kg P, and 9.8 and 16.1 kg K ha-1 yr-1 in the 7.5 y and 2.5 y old sites, respectively), preventing off-site eutrophication. We conclude that Sphagnum farming as an alternative for drainage-based peatland agriculture may contribute effectively to tackling environmental challenges such as local and regional downstream pollution and global climate change.


Assuntos
Sphagnopsida , Agricultura , Alemanha , Pradaria , Nutrientes , Solo , Áreas Alagadas
11.
Nat Commun ; 11(1): 1644, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32242055

RESUMO

Peatlands are strategic areas for climate change mitigation because of their matchless carbon stocks. Drained peatlands release this carbon to the atmosphere as carbon dioxide (CO2). Peatland rewetting effectively stops these CO2 emissions, but also re-establishes the emission of methane (CH4). Essentially, management must choose between CO2 emissions from drained, or CH4 emissions from rewetted, peatland. This choice must consider radiative effects and atmospheric lifetimes of both gases, with CO2 being a weak but persistent, and CH4 a strong but short-lived, greenhouse gas. The resulting climatic effects are, thus, strongly time-dependent. We used a radiative forcing model to compare forcing dynamics of global scenarios for future peatland management using areal data from the Global Peatland Database. Our results show that CH4 radiative forcing does not undermine the climate change mitigation potential of peatland rewetting. Instead, postponing rewetting increases the long-term warming effect through continued CO2 emissions.

13.
Radiother Oncol ; 107(3): 352-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23830193

RESUMO

BACKGROUND AND PURPOSE: To predict the lowest achievable rectum D35 for quality assurance of IMRT plans of prostate cancer patients. MATERIALS AND METHODS: For each of 24 patients from a database of 47 previously treated patients, the anatomy was compared to the anatomies of the other 46 to predict the minimal achievable rectum D35. The 24 patients were then replanned to obtain maximally reduced rectum D35. Next, the newly derived plans were added to the database to replace the original clinical plans, and new predictions of the lowest achievable rectum D35 were made. RESULTS: After replanning, the rectum D35 reduced by 9.3 Gy±6.1 (average±1 SD; p<0.001) compared to the original plan. The first predictions of the rectum D35 were 4.8 Gy±4.2 (average±1 SD; p<0.001) too high when evaluated with the new plans. After updating the database, the replanned and newly predicted rectum D35 agreed within 0.1 Gy±2.8 (average±1 SD; p=0.89). The doses to the bladder, anus and femoral heads did not increase compared to the original plans. CONCLUSIONS: For individual prostate patients, the lowest achievable rectum D35 in IMRT planning can be accurately predicted from dose distributions of previously treated patients by quantitative comparison of patient anatomies. These predictions can be used to quantitatively assess the quality of IMRT plans.


Assuntos
Neoplasias da Próstata/radioterapia , Garantia da Qualidade dos Cuidados de Saúde , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Reto/efeitos da radiação , Humanos , Masculino , Órgãos em Risco , Controle de Qualidade , Dosagem Radioterapêutica
14.
Strahlenther Onkol ; 187(12): 835-41, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22127361

RESUMO

PURPOSE: To make a patient- and treatment-specific computed tomography (CT) scan and to create a three-dimensional (3D) patient model for superficial hyperthermia treatment planning (SHTP). PATIENTS, MATERIALS, AND METHODS: Patients with recurrent breast adenocarcinoma in previously irradiated areas referred for radiotherapy (RT) and hyperthermia (HT) treatment and giving informed consent were included. After insertion of the thermometry catheters in the treatment area, a CT scan in the treatment position was made. RESULTS: A total of 26 patients have been, thus far, included in the study. During the study period, five types of adjustments were made to the procedure: (1) marking the RT field with radioopaque markers, (2) making the CT scan after the first HT treatment instead of before, (3) using an air- and foam-filled (dummy) water bolus, (4) a change to radiolucent catheters for which radioopaque markers were needed, and (5) marking the visible/palpable extent of the tumor with radioopaque markers, if necessary. With these adjustments, all necessary information is visible on the CT scan. Each CT slice was automatically segmented into muscle, fat, bone, and air. RT field, catheters, applicators, and tumor lesions, if indicated, were outlined manually using the segmentation program iSeg. Next the model was imported into SEMCAD X, a 3D electromagnetic field simulator. CONCLUSION: Using the final procedure to obtain a patient- and treatment-specific CT scan, it is possible to create a 3D model for SHTP.


Assuntos
Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/radioterapia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/radioterapia , Hipertermia Induzida/métodos , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada Multidetectores/métodos , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/terapia , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Terapia Combinada , Feminino , Humanos , Posicionamento do Paciente
15.
Med Dosim ; 36(2): 119-25, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20435466

RESUMO

The efficacy of metal artefact reduction (MAR) software to suppress artefacts in reconstructed computed tomography (CT) images originating from small metal objects, like tumor markers and surgical clips, was evaluated. In addition, possible implications of using digital reconstructed radiographs (DRRs), based on the MAR CT images, for setup verification were analyzed. A phantom and 15 patients with different tumor sites and implanted markers were imaged with a multislice CT scanner. The raw image data was reconstructed both with the clinically used filtered-backprojection (FBP) and with the MAR software. Using the MAR software, improvements in image quality were often observed in CT slices with markers or clips. Especially when several markers were located near to each other, fewer streak artefacts were observed than with the FBP algorithm. In addition, the shape and size of markers could be identified more accurately, reducing the contoured marker volumes by a factor of 2. For the phantom study, the CT numbers measured near to the markers corresponded more closely to the expected values. However, the MAR images were slightly more smoothed compared with the images reconstructed with FBP. For 8 prostate cancer patients in this study, the interobserver variation in 3D marker definition was similar (<0.4 mm) when using DRRs based on either FBP or MAR CT scans. Automatic marker matches also showed a similar success rate. However, differences in automatic match results up to 1 mm, caused by differences in the marker definition, were observed, which turned out to be (borderline) statistically significant (p = 0.06) for 2 patients. In conclusion, the MAR software might improve image quality by suppressing metal artefacts, probably allowing for a more reliable delineation of structures. When implanted markers or clips are used for setup verification, the accuracy may slightly be improved as well, which is relevant when using very tight clinical target volume (CTV) to planning target volume (PTV) margins for planning.


Assuntos
Artefatos , Neoplasias da Próstata/diagnóstico por imagem , Próteses e Implantes , Intensificação de Imagem Radiográfica/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos , Humanos , Masculino , Imagens de Fantasmas , Neoplasias da Próstata/radioterapia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
Int J Radiat Oncol Biol Phys ; 75(4): 1201-8, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19386435

RESUMO

PURPOSE: To assess day-to-day differences between planned and delivered target volume (TV) and organ-at-risk (OAR) dose distributions in liver stereotactic body radiation therapy (SBRT), and to investigate the dosimetric impact of setup corrections. METHODS AND MATERIALS: For 14 patients previously treated with SBRT, the planning CT scan and three treatment scans (one for each fraction) were included in this study. For each treatment scan, two dose distributions were calculated: one using the planned setup for the body frame (no correction), and one using the clinically applied (corrected) setup derived from measured tumor displacements. Per scan, the two dose distributions were mutually compared, and the clinically delivered distribution was compared with planning. Doses were recalculated in equivalent 2-Gy fraction doses. Statistical analysis was performed with the linear mixed model. RESULTS: With setup corrections, the mean loss in TV coverage relative to planning was 1.7%, compared with 6.8% without corrections. For calculated equivalent uniform doses, these figures were 2.3% and 15.5%, respectively. As for the TV, mean deviations of delivered OAR doses from planning were small (between -0.4 and +0.3 Gy), but the spread was much larger for the OARs. In contrast to the TV, the mean impact of setup corrections on realized OAR doses was close to zero, with large positive and negative exceptions. CONCLUSIONS: Daily correction of the treatment setup is required to obtain adequate TV coverage. Because of day-to-day patient anatomy changes, large deviations in OAR doses from planning did occur. On average, setup corrections had no impact on these doses. Development of new procedures for image guidance and adaptive protocols is warranted.


Assuntos
Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Duodeno/efeitos da radiação , Feminino , Humanos , Modelos Lineares , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Masculino , Pessoa de Meia-Idade , Lesões por Radiação/prevenção & controle , Dosagem Radioterapêutica , Estômago/efeitos da radiação , Tomografia Computadorizada por Raios X , Carga Tumoral
17.
Lung Cancer ; 38(3): 297-301, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12445752

RESUMO

Concurrent chemo-radiotherapy (CT-RT) has been shown to be superior to sequential CT-RT for stage III non-small cell lung cancer (NSCLC). Pre-chemotherapy gross tumor volumes (GTV) are commonly contoured for sequential CT-RT and, as significant inter-clinician variability exists in defining GTV's for lung cancer, we postulated that the poorer local control observed with sequential CT-RT may partly be due to the larger errors in defining GTV after chemotherapy-induced tumor regression. Pre-and post-chemotherapy CT scans for RT planning (RTP) were performed in ten patients who received induction chemotherapy for NSCLC. Image registration of pre- and post-chemotherapy RTP scans was performed for all patients. GTV's were first contoured in the conventional manner by two clinicians, i.e. by visual reconstruction from hard copies of the pre-chemotherapy diagnostic CT scans ('GTV-visual'). A 'GTV-match' was then contoured after image-registration, and the 'gold standard' volume was considered to be the overlap of the 'GTV-match' generated by both clinicians. The 'GTV-match' was on average 31-40% larger than 'GTV-visual'. The mean percentage of the 'gold standard', which was not covered by the 'GTV-visual' was similar for both clinicians, i.e. 26.3+/-12.5 and 28.0+/-15.0%. The inter-clinician agreement in contouring improved after image registration. These data suggest that conventional visual contouring of pre-chemotherapy GTV's may fail to treat the actual pre-chemotherapy tumor volume, and thus confound studies evaluating optimal sequencing of chemo-radiotherapy in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Planejamento da Radioterapia Assistida por Computador , Carcinoma Pulmonar de Células não Pequenas/patologia , Terapia Combinada , Meios de Contraste , Humanos , Imageamento Tridimensional , Neoplasias Pulmonares/patologia , Tomografia Computadorizada por Raios X , Resultado do Tratamento
18.
Int J Radiat Oncol Biol Phys ; 53(5): 1211-5, 2002 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12128122

RESUMO

PURPOSE: The mobility of mediastinal nodes was studied on multiple CT scans of the thorax from patients with non-small-cell lung cancer. PATIENTS AND METHODS: A total of 10 enlarged mediastinal nodes/masses were identified in 8 patients with non-small-cell lung cancer. Nodal locations were classified using the Naruke/ATS-LCSG system, and between 3 and 6 scans were available for each site. The CT data sets were coregistered, and the contoured nodes were automatically projected onto the initial planning CT scan. An encompassing nodal volume (ENV) of all contours of a particular node was manually contoured on all scans. Individual nodal volumes were expanded in three dimensions to establish additional margins required to encompass the ENV. RESULTS: The mean volume of nodes studied ranged from 0.8 to 23.2 cc. The addition to individual nodes of a margin of 5 mm was found to result in a mean ENV coverage of >or=95% at all sites. For individual nodes at locations N4R, N5, and N6, however, the coverage ranged from 87.8% to 92.6%. CONCLUSION: The addition of a margin of 5 mm to individual mediastinal nodes seems to be adequate to account for variations in both contouring and mobility.


Assuntos
Neoplasias Pulmonares/radioterapia , Linfonodos/patologia , Mediastino/anatomia & histologia , Mediastino/efeitos da radiação , Humanos , Linfonodos/anatomia & histologia , Metástase Linfática/radioterapia , Modelos Biológicos , Radioterapia/métodos , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...