Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38891478

RESUMO

Particleboard, engineered wood products as part of a large family of wood composite materials, developed in use mainly in the 1950s and 1960s to utilize inferior wood and wood waste when good-quality wood was in short supply; the annual production capacity worldwide is over 100 million m3. It is also necessary to have a lot of wood raw material for its production, although raw material resources are limited on our planet. In addition to the main wood species, it is therefore possible to think about the wider use of alternative, lesser-known European species of alder, larch, and birch in particleboard production. These three wood species represent an eco-friendly and sustainable wood alternative to the conventional wood raw materials used. This review confirms the diversity of the use of these three species in different fields and proves their suitability in relation to particleboard production. Fundamental research is ongoing in certain universities to determine the proportional shares of use of these tree species in particleboard (in a certain weight proportion in their core layers) for the purpose of formulating the correct technology shares and rules for their application in the wood-based panel industry.

2.
Materials (Basel) ; 15(2)2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35057368

RESUMO

The nature of alternating current transfer via metallic materials is specific, since the current density tends to be inhomogeneous across the cross-section of the conductor and the skin effect tends to occur. However, the influence of this effect on the behaviour of the conductor can be optimized via the design and fabrication procedures. The study presents innovative design of an Al-Cu clad conductor, which is supposed to affect favourably the influence of the skin effect. The clad conductors of various diameters (20 mm, 15 mm, and 10 mm) were fabricated via rotary swaging at room temperature, and their electric characteristics were subsequently examined both experimentally and via numerical simulations. Structure analyses performed to document the effects of the swaging technology on the development of substructure and characteristic structural features were carried out by scanning electron microscopy (electron backscatter diffraction analyses), and transmission electron microscopy. The results showed that the design of the composite has a favourable effect on decreasing the power losses during alternating current transfer and that the substructure development affected favourably the electric resistance of the conductor. The highest electric resistance was measured for the composite conductor with the diameter of 20 mm (1.8% increase compared to electric resistance during transfer of direct current). This value then decreased to 0.6%, and 0.1% after swaging down to the diameters of 15 mm, and 10 mm; the 10 mm composite featured the finest grains, partially restored structure, and texture randomization compared to the 20 mm and 15 mm composites. Manufacturing of the clad composite via rotary swaging imparted advantageous combinations of both the electric and mechanical properties, as swaging also introduced increased microhardness.

3.
Materials (Basel) ; 14(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34500907

RESUMO

Tristal steel is low-carbon construction-type steel widely used in the automotive industry, e.g., for braking components. Given the contemporary demands on the high-volume production of such components, these are typically fabricated using automatic sequential machines, which can produce components at strain rates up to 103 s-1. For this reason, characterising the behaviour of the used material at high strain rates is of the utmost importance for successful industrial production. This study focuses on the characterisation of the behaviour of low-carbon steel via developing its material model using the Johnson-Cook constitutive equation. At first, the Taylor anvil test is performed. Subsequently, the acquired data together with the results of observations of structures and properties of the tested specimens are used to fill the necessary parameters into the equation. Finally, the developed equation is used to numerically simulate the Taylor anvil test and the predicted data is correlated with the experimentally acquired one. The results showed a satisfactory correlation of the experimental and predicted data; the deformed specimen region featured increased occurrence of dislocations, as well as higher hardness (its original value of 88 HV increased to more than 200 HV after testing), which corresponded to the predicted distributions of effective imposed strain and compressive stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...