Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(16): 163403, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38701453

RESUMO

We report optical trapping of laser-cooled molecules at sufficient density to observe molecule-molecule collisions for the first time in a bulk gas. SrF molecules from a red-detuned magneto-optical trap (MOT) are compressed and cooled in a blue-detuned MOT. Roughly 30% of these molecules are loaded into an optical dipole trap with peak number density n_{0}≈3×10^{10} cm^{-3} and temperature T≈40 µK. We observe two-body loss with rate coefficient ß=2.7_{-0.8}^{+1.2}×10^{-10} cm^{3} s^{-1}. Achieving this density and temperature opens a path to evaporative cooling towards quantum degeneracy of laser-cooled molecules.

2.
Phys Rev Lett ; 127(16): 163201, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34723596

RESUMO

We demonstrate loading of SrF molecules into an optical dipole trap (ODT) via in-trap Λ-enhanced gray molasses cooling. We find that this cooling can be optimized by a proper choice of relative ODT and cooling beam polarizations. In this optimized configuration, we observe molecules with temperatures as low as 14(1) µK in traps with depths up to 570 µK. With optimized parameters, we transfer ∼5% of molecules from our radio-frequency magneto-optical trap into the ODT, at a density of ∼2×10^{9} cm^{-3}, a phase space density of ∼2×10^{-7}, and with a trap lifetime of ∼1 s.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...