Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 95(32): 11879-11884, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37528801

RESUMO

Proton-transfer-reaction mass spectrometry (PTR-MS) is widely used for measuring organic trace gases in air. In traditional PTR-MS, both nonpolar and polar analytes are ionized with unit efficiency, as predicted from ion-molecule collision theories. This well-defined ion chemistry allows for direct quantification of analytes without prior calibration and therefore is an important characteristic of PTR-MS. In an effort to further increase the sensitivity, recently developed ultrahigh sensitivity chemical ionization mass spectrometry (CIMS) analyzers have, however, been reported to have sacrificed unit ionization efficiency for selected analytes or classes of analytes. We herein report on the development of a novel ultrasensitive PTR-MS instrument, the FUSION PTR-TOF 10k, which exhibits the same universal unit response as conventional PTR-MS analyzers. The core component of this analyzer is the newly designed FUSION ion-molecule reactor, which is a stack of concentric ring electrodes generating a static longitudinal electric field superimposed by a focusing transversal radiofrequency (RF) field. The FUSION PTR-TOF 10k instrument is equipped with an improved ion source, capable of switching between different reagent ions (H3O+, O2+, NO+, NH4+) in less than one second. The improved time-of-flight mass spectrometer analyzes m/z signals with a mass resolution in the 10000-15000 range. FUSION PTR-TOF 10k achieves sensitivities up to 80000 cps ppbV-1 and detection limits down to 0.5 pptV for a 1 s measurement time. We show time-series of naphthalene and 13C-napthalene as measured in ambient air in Innsbruck for demonstrating the sub-pptV detection capability of this novel FUSION PTR-TOF 10k.

2.
J Mass Spectrom ; 50(2): 427-31, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25800025

RESUMO

In this study we demonstrate the potential of selective reagent ionisation-time of flight-mass spectrometry for the rapid and selective identification of a popular new psychoactive substance blend called 'synthacaine', a mixture that is supposed to imitate the sensory and intoxicating effects of cocaine. Reactions with H3O(+) result in protonated parent molecules which can be tentatively assigned to benzocaine and methiopropamine. However, by comparing the product ion branching ratios obtained at two reduced electric field values (90 and 170 Td) for two reagent ions (H3O(+) and NO(+)) to those of the pure chemicals, we show that identification is possible with a much higher level of confidence then when relying solely on the m/z of protonated parent molecules. A rapid and highly selective analytical identification of the constituents of a recreational drug is particularly crucial to medical personnel for the prompt medical treatment of overdoses, toxic effects or allergic reactions.


Assuntos
Drogas Ilícitas/análise , Espectrometria de Massas/métodos , Psicotrópicos/análise , Detecção do Abuso de Substâncias/métodos , Benzocaína/análise , Benzocaína/química , Drogas Ilícitas/química , Metanfetamina/análogos & derivados , Metanfetamina/análise , Metanfetamina/química , Psicotrópicos/química , Tiofenos/análise , Tiofenos/química
3.
Int J Mass Spectrom ; 360: 28-38, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25844048

RESUMO

The rapid expansion in the number and use of new psychoactive substances presents a significant analytical challenge because highly sensitive instrumentation capable of detecting a broad range of chemical compounds in real-time with a low rate of false positives is required. A Selective Reagent Ionisation-Time of Flight-Mass Spectrometry (SRI-ToF-MS) instrument is capable of meeting all of these requirements. With its high mass resolution (up to m/Δm of 8000), the application of variations in reduced electric field strength (E/N) and use of different reagent ions, the ambiguity of a nominal (monoisotopic) m/z is reduced and hence the identification of chemicals in a complex chemical environment with a high level of confidence is enabled. In this study we report the use of a SRI-ToF-MS instrument to investigate the reactions of H3O+, O2+, NO+ and Kr+ with 10 readily available (at the time of purchase) new psychoactive substances, namely 4-fluoroamphetamine, methiopropamine, ethcathinone, 4-methylethcathinone, N-ethylbuphedrone, ethylphenidate, 5-MeO-DALT, dimethocaine, 5-(2-aminopropyl)benzofuran and nitracaine. In particular, the dependence of product ion branching ratios on the reduced electric field strength for all reagent ions was investigated and is reported here. The results reported represent a significant amount of new data which will be of use for the development of drug detection techniques suitable for real world scenarios.

4.
J Mass Spectrom ; 48(9): 1015-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24078242

RESUMO

The isomers 4-methylethcathinone and N-ethylbuphedrone are substitutes for the recently banned drug mephedrone. We find that with conventional proton transfer reaction mass spectrometry (PTR-MS), it is not possible to distinguish between these two isomers, because essentially for both substances, only the protonated molecules are observed at a mass-to-charge ratio of 192 (C12 H18NO(+)). However, when utilising an advanced PTR-MS instrument that allows us to switch the reagent ions (selective reagent ionisation) from H3O(+) (which is commonly used in PTR-MS) to NO(+), O2(+) and Kr(+), characteristic product (fragment) ions are detected: C4H10N(+) (72 Da) for 4-methylethcathinone and C5 H12N(+) (86 Da) for N-ethylbuphedrone; thus, selective reagent ionisation MS proves to be a powerful tool for fast detection and identification of these compounds.


Assuntos
Drogas Desenhadas/química , Espectrometria de Massas/métodos , Metanfetamina/análogos & derivados , Psicotrópicos/química , Indicadores e Reagentes , Íons/química , Isomerismo , Metanfetamina/química
5.
Rapid Commun Mass Spectrom ; 27(2): 325-32, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23239380

RESUMO

RATIONALE: Security and protection against terrorist attacks are major issues in modern society. One especially challenging task is the monitoring and protection of air conditioning and heating systems of buildings against terrorist attacks with toxic chemicals. As existing technologies have low selectivity, long response times or insufficient sensitivity, there is a need for a novel approach such as we present here. METHODS: We have analyzed various chemical warfare agents (CWAs) and/or toxic industrial compounds (TICs) and related compounds, namely phosgene, diphosgene, chloroacetone, chloroacetophenone, diisopropylaminoethanol, and triethyl phosphate, utilizing a high-resolution proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOFMS) instrument with the objective of finding key product ions and their intensities, which will allow a low-resolution quadrupole mass spectrometry based PTR-MS system to be used with high confidence in the assignment of threat agents in the atmosphere. RESULTS: We obtained high accuracy PTR-TOFMS mass spectra of the six compounds under study at two different values for the reduced electric field in the drift tube (E/N). From these data we have compiled a table containing product ions, and isotopic and E/N ratios for highly selective threat compound detection with a compact and cost-effective quadrupole-based PTR-MS instrument. Furthermore, using chloroacetophenone (tear gas), we demonstrated that this instrument's response is highly linear in the concentration range of typical Acute Exposure Guideline Levels (AEGLs). CONCLUSIONS: On the basis of the presented results it is possible to develop a compact and cost-effective PTR-QMS instrument that monitors air supply systems and triggers an alarm as soon as the presence of a threat agent is detected. We hope that this real-time surveillance device will help to seriously improve safety and security in environments vulnerable to terrorist attacks with toxic chemicals.

6.
Rapid Commun Mass Spectrom ; 23(23): 3875-80, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19902419

RESUMO

This work demonstrates for the first time the potential of using recent developments in proton transfer reaction mass spectrometry for the rapid detection and identification of chemical warfare agents (CWAs) in real-time. A high-resolution (m/Deltam up to 8000) and high-sensitivity (approximately 50 cps/ppbv) proton transfer reaction time-of-flight mass spectrometer (PTR-TOF 8000 from Ionicon Analytik GmBH) has been successfully used to detect a number of CWA simulants at room temperature; namely dimethyl methylphosphonate, diethyl methylphosphonate, diisopropyl methylphosphonate, dipropylene glycol monomethyl ether and 2-chloroethyl ethyl sulfide. Importantly, we demonstrate in this paper the potential to identify CWAs with a high level of confidence in complex chemical environments, where multiple threat agents and interferents could also be present in trace amounts, thereby reducing the risk of false positives. Instantaneous detection and identification of trace quantities of chemical threats using proton transfer reaction mass spectrometry could form the basis for a timely warning system capability with greater precision and accuracy than is currently provided by existing analytical technologies.

7.
J Agric Food Chem ; 53(2): 403-9, 2005 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-15656680

RESUMO

The influence of gel texture on retronasal aroma release during mastication was followed by means of real-time proton-transfer reaction mass spectrometry and compared to sensory perception of overall aroma intensity. A clear correlation was found between individual-specific consumption patterns and the respective physicochemical release patterns in vivo. A modified data analysis approach was used to monitor the aroma changes during the mastication process. It was found that the temporal resolution of the release profile played an important role in adequate description of the release processes. On the basis of this observation, a hypothesis is presented for the observed differences in intensity rating.


Assuntos
Géis , Proteínas do Leite , Nariz/fisiologia , Odorantes/análise , Percepção , Adulto , Feminino , Humanos , Masculino , Mastigação , Volatilização , Proteínas do Soro do Leite
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...