Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 667: 601-612, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30833259

RESUMO

Methylmercury (MeHg) bioaccumulation in freshwater aquatic systems is impacted by anthropogenic stressors, including climate change and nutrient enrichment. The goal of this study was to determine how warmer water temperatures and excess nutrients would alter zooplankton communities and phytoplankton concentrations, and whether those changes would in turn increase or decrease MeHg concentrations in freshwater zooplankton. To test this, we employed a 2 × 2 factorial experimental design with nutrient and temperature treatments. Mesocosms were filled with ambient water and plankton from Cottage Grove Reservoir, Oregon, U.S.A., a waterbody that has experienced decades of elevated MeHg concentrations and corresponding fish consumption advisories due to run-off from Black Butte Mine tailings, located within the watershed. Treatment combinations of warmer temperature (increased by 0.7 °C), nutrient addition (a single pulse of 10× ambient concentrations of nitrogen and phosphorous), control, and a combination of temperature and nutrients were applied to mesocosms. The individual treatments altered phytoplankton densities and community structure, but alone the effects on MeHg concentrations were muted. Importantly, we found a significant interactive effect of nutrients and temperature: the nutrient addition appeared to buffer against increased MeHg concentrations associated with elevated temperature. However, there was variability in this response, which seems to be related to the abundance of Daphnia and edible phytoplankton. Nutrients at low temperature were associated with marginal increases (1.1×) in zooplankton MeHg. Our findings suggest that global change drivers that influence community composition and ecosystem energetics of both zooplankton and phytoplankton can alter MeHg pathways through food webs.


Assuntos
Monitoramento Ambiental , Compostos de Metilmercúrio/análise , Nitrogênio/análise , Fósforo/análise , Poluentes Químicos da Água/análise , Zooplâncton/metabolismo , Animais , Mudança Climática , Daphnia/metabolismo , Ecossistema , Cadeia Alimentar , Lagos , Compostos de Metilmercúrio/metabolismo , Oregon , Temperatura , Poluentes Químicos da Água/metabolismo
2.
Environ Manage ; 55(6): 1217-26, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25822888

RESUMO

Influenced by natural climatic, geological, and evolutionary changes, landscapes and the ecosystems within are continuously changing. In addition to these natural pressures, anthropogenic drivers have increasingly influenced ecosystems. Whether affected by natural or anthropogenic processes, ecosystems, ecological communities, and ecosystem functioning are dynamic and can lead to "novel" or "emerging" ecosystems. Current literature identifies several definitions of these ecosystems but lacks an unambiguous definition and framework for categorizing what constitutes a novel ecosystem and for informing decisions around best management practices. Here we explore the various definitions used for novel ecosystems, present an unambiguous definition, and propose a framework for identifying the most appropriate management option. We identify and discuss three approaches for managing novel ecosystems: managing against, tolerating, and managing for these systems, and we provide real-world examples of each approach. We suggest that this framework will allow managers to make thoughtful decisions about which strategy is most appropriate for each unique situation, to determine whether the strategy is working, and to facilitate decision-making when it is time to modify the management approach.


Assuntos
Evolução Biológica , Mudança Climática , Conservação dos Recursos Naturais/métodos , Ecossistema , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...