Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geophys Res Lett ; 48(10): e2020GL091432, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34219826

RESUMO

Radar-sounding surveys associated with the discovery of a large impact crater beneath Hiawatha Glacier, Greenland, revealed bright, flat subglacial reflections hypothesized to originate from a subglacial groundwater table. We test this hypothesis using radiometric and hydrologic analysis of those radar data. The dielectric loss between the reflection from the top of the basal layer and subglacial reflection and their reflectivity difference represent dual constraints upon the complex permittivity of the basal material. Either ice-cemented debris or fractured, well-drained bedrock explain the basal layer's radiometric properties. The subglacial reflector's geometry is parallel to isopotential hydraulic head contours, located 7.5-15.3 m below the interface, and 11 ± 7 dB brighter than the ice-basal layer reflection. We conclude that this subglacial reflection is a groundwater table and that its detection was enabled by the wide bandwidth of the radar system and unusual geologic setting, suggesting a path for future direct radar detection of subglacial groundwater elsewhere.

2.
J Geophys Res Earth Surf ; 126(10): e2021JF006296, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35865452

RESUMO

The Amundsen Sea Embayment of the West Antarctic Ice Sheet contains Thwaites and Pine Island Glaciers, two of the most rapidly changing glaciers in Antarctica. To date, Pine Island and Thwaites Glaciers have only been observed by independent airborne radar sounding surveys, but a combined cross-basin analysis that investigates the basal conditions across the Pine Island-Thwaites Glaciers boundary has not been performed. Here, we combine two radar surveys and correct for their differences in system parameters to produce unified englacial attenuation and basal relative reflectivity maps spanning both Pine Island and Thwaites Glaciers. Relative reflectivities range from -24.8 to +37.4 dB with the highest values beneath fast-flowing ice at the ice sheet margin. By comparing our reflectivity results with previously derived radar specularity and trailing bed echoes at Thwaites Glacier, we find a highly diverse subglacial landscape and hydrologic conditions that evolve along-flow. Together, these findings highlight the potential for joint airborne radar analysis with ground-based seismic and geomorphological observations to understand variations in the bed properties and cross-catchment interactions of ice streams and outlet glaciers.

3.
Philos Trans R Soc Lond B Biol Sci ; 372(1724)2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28533453

RESUMO

Many animals use structural coloration to create bright and conspicuous visual signals. Selection of the size and shape of the optical structures animals use defines both the colour and intensity of the light reflected. The material used to create these reflectors is also important; however, animals are restricted to a limited number of materials: commonly chitin, guanine and the protein, reflectin. In this work we highlight that a particular set of material properties can also be under selection in order to increase the optical functionality of structural reflectors. Specifically, polarization properties, such as birefringence (the difference between the refractive indices of a material) and chirality (which relates to molecular asymmetry) are both under selection to create enhanced structural reflectivity. We demonstrate that the structural coloration of the gold beetle Chrysina resplendens and silvery reflective sides of the Atlantic herring, Clupea harengus are two examples of this phenomenon. Importantly, these polarization properties are not selected to control the polarization of the reflected light as a source of visual information per se. Instead, by creating higher levels of reflectivity than are otherwise possible, such internal polarization properties improve intensity-matching camouflage.This article is part of the themed issue 'Animal coloration: production, perception, function and application'.


Assuntos
Quitina/química , Besouros/fisiologia , Cor , Peixes/fisiologia , Guanina/química , Animais , Birrefringência , Besouros/química , Estereoisomerismo
4.
Sci Rep ; 6: 21744, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26883448

RESUMO

Many biophotonic structures have their spectral properties of reflection 'tuned' using the (zeroth-order) Bragg criteria for phase constructive interference. This is associated with a periodicity, or distribution of periodicities, parallel to the direction of illumination. The polarization properties of these reflections are, however, typically constrained by the dimensional symmetry and intrinsic dielectric properties of the biological materials. Here we report a linearly polarizing reflector in a stomatopod crustacean that consists of 6-8 layers of hollow, ovoid vesicles with principal axes of ~550 nm, ~250 nm and ~150 nm. The reflection of unpolarized normally incident light is blue/green in colour with maximum reflectance wavelength of 520 nm and a degree of polarization greater than 0.6 over most of the visible spectrum. We demonstrate that the polarizing reflection can be explained by a resonant coupling with the first-order, in-plane, Bragg harmonics. These harmonics are associated with a distribution of periodicities perpendicular to the direction of illumination, and, due to the shape-anisotropy of the vesicles, are different for each linear polarization mode. This control and tuning of the polarization of the reflection using shape-anisotropic hollow scatterers is unlike any optical structure previously described and could provide a new design pathway for polarization-tunability in man-made photonic devices.


Assuntos
Crustáceos/anatomia & histologia , Fenômenos Ópticos , Animais , Anisotropia , Microscopia de Interferência
5.
Artigo em Inglês | MEDLINE | ID: mdl-22983438

RESUMO

The cornea is the first optical element in the path of light entering the eye, playing a role in image formation and protection. Corneas of vertebrate simple camera-type eyes possess microprojections on the outer surface in the form of microridges, microvilli, and microplicae. Corneas of invertebrates, which have simple or compound eyes, or both, may be featureless or may possess microprojections in the form of nipples. It was previously unknown whether cephalopods (invertebrates with camera-type eyes like vertebrates) possess corneal microprojections and, if so, of what form. Using scanning electron microscopy, we examined corneas of a range of cephalopods and discovered nipple-like microprojections in all species. In some species, nipples were like those described on arthropod compound eyes, with a regular hexagonal arrangement and sizes ranging from 75 to 103 nm in diameter. In others, nipples were nodule shaped and irregularly distributed. Although terrestrial invertebrate nipples create an antireflective surface that may play a role in camouflage, no such optical function can be assigned to cephalopod nipples due to refractive index similarities of corneas and water. Their function may be to increase surface-area-to-volume ratio of corneal epithelial cells to increase nutrient, gas, and metabolite exchange, and/or stabilize the corneal mucous layer, as proposed for corneal microprojections of vertebrates.


Assuntos
Cefalópodes/ultraestrutura , Epitélio Corneano/ultraestrutura , Animais , Microscopia Eletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...