Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 223(3)2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38240799

RESUMO

The highly conserved HEATR5 proteins are best known for their roles in membrane traffic mediated by the adaptor protein complex-1 (AP1). HEATR5 proteins rely on fast-evolving cofactors to bind to AP1. However, how HEATR5 proteins interact with these cofactors is unknown. Here, we report that the budding yeast HEATR5 protein, Laa1, functions in two biochemically distinct complexes. These complexes are defined by a pair of mutually exclusive Laa1-binding proteins, Laa2 and the previously uncharacterized Lft1/Yml037c. Despite limited sequence similarity, biochemical analysis and structure predictions indicate that Lft1 and Laa2 bind Laa1 via structurally similar mechanisms. Both Laa1 complexes function in intra-Golgi recycling. However, only the Laa2-Laa1 complex binds to AP1 and contributes to its localization. Finally, structure predictions indicate that human HEATR5 proteins bind to a pair of fast-evolving interacting partners via a mechanism similar to that observed in yeast. These results reveal mechanistic insight into how HEATR5 proteins bind their cofactors and indicate that Laa1 performs functions besides recruiting AP1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Complexo de Golgi , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Complexo 1 de Proteínas Adaptadoras/metabolismo , Proteínas de Transporte/metabolismo , Complexo de Golgi/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
bioRxiv ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37662263

RESUMO

The highly conserved HEATR5 proteins are best known for their roles in membrane traffic mediated by the adaptor protein complex-1 (AP1). HEATR5 proteins rely on fast-evolving co-factors to bind to AP1. However, how HEATR5 proteins interact with these co-factors is unknown. Here, we report that the budding yeast HEATR5 protein, Laa1, functions in two biochemically distinct complexes. These complexes are defined by a pair of mutually exclusive Laa1-binding proteins, Laa2 and the previously uncharacterized Lft1/Yml037c. Despite limited sequence similarity, biochemical analysis and structure predictions indicate that Lft1 and Laa2 bind Laa1 via structurally similar mechanisms. Both Laa1 complexes function in intra-Golgi recycling. However, only the Laa2-Laa1 complex binds to AP1 and contributes to its localization. Finally, structure predictions indicate that human HEATR5 proteins bind to a pair of fast-evolving interacting partners via a mechanism similar to that observed in yeast. These results reveal mechanistic insight into how HEATR5 proteins bind their co-factors and indicate that Laa1 performs functions besides recruiting AP1.

4.
Nat Cell Biol ; 24(7): 1019-1028, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35739317

RESUMO

Neutrophils migrating towards chemoattractant gradients amplify their recruitment range by releasing the secondary chemoattractant leukotriene B4 (LTB4) refs. 1,2. We previously demonstrated that LTB4 and its synthesizing enzymes, 5-lipoxygenase (5-LO), 5-LO activating protein (FLAP) and leukotriene A4 hydrolase, are packaged and released in exosomes3. Here we report that the biogenesis of the LTB4-containing exosomes originates at the nuclear envelope (NE) of activated neutrophils. We show that the neutral sphingomyelinase 1 (nSMase1)-mediated generation of ceramide-enriched lipid-ordered microdomains initiates the clustering of the LTB4-synthesizing enzymes on the NE. We isolated and analysed exosomes from activated neutrophils and established that the FLAP/5-LO-positive exosome population is distinct from that of the CD63-positive exosome population. Furthermore, we observed a strong co-localization between ALIX and FLAP at the periphery of nuclei and within cytosolic vesicles. We propose that the initiation of NE curvature and bud formation is mediated by nSMase1-dependent ceramide generation, which leads to FLAP and ALIX recruitment. Together, these observations elucidate the mechanism for LTB4 secretion and identify a non-conventional pathway for exosome generation.


Assuntos
Exossomos , Proteínas Ativadoras de 5-Lipoxigenase , Ceramidas/metabolismo , Fatores Quimiotáticos/metabolismo , Exossomos/metabolismo , Leucotrieno B4/metabolismo , Neutrófilos/metabolismo , Membrana Nuclear/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...