Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-497376

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the highly contagious agent responsible for the coronavirus disease 2019 (COVID-19) pandemic. An essential requirement for understanding SARS-CoV-2 fundamental biology and the impact of anti-viral therapeutics are robust methods to detect for the presence of the virus in infected cells or animal models. Despite the development and successful generation of recombinant (r)SARS-CoV-2 expressing fluorescent or luciferase reporter genes, knowledge acquired from their use in in vitro assays and/or in live animals are limited to the properties of the fluorescent or luciferase reporter genes. Herein, for the first time, we engineered a replication-competent rSARS-CoV-2 that expresses both fluorescent (mCherry) and luciferase (Nluc) reporter genes (rSARS-CoV-2/mCherry-Nluc) to overcome limitations associated with the use of a single reporter gene. In cultured cells, rSARS-CoV-2/mCherry-Nluc displayed similar viral fitness as rSARS-CoV-2 expressing single reporter fluorescent and luciferase genes (rSARS-CoV-2/mCherry and rSARS-CoV-2/Nluc, respectively), or wild-type (WT) rSARS-CoV-2, while maintaining comparable expression levels of both reporter genes. In vivo, rSARS-CoV-2/mCherry-Nluc has similar pathogenicity in K18 human angiotensin converting enzyme 2 (hACE2) transgenic mice than rSARS-CoV-2 expressing individual reporter genes, or WT rSARS-CoV-2. Importantly, rSARS-CoV-2/mCherry-Nluc facilitates the assessment of viral infection and transmission in golden Syrian hamsters using in vivo imaging systems (IVIS). Altogether, this study demonstrates the feasibility of using this novel bireporter-expressing rSARS-CoV-2 for the study SARS-CoV-2 in vitro and in vivo. IMPORTANCEDespite the availability of vaccines and antivirals, the coronavirus disease 2019 (COVID-19) pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to ravage health care institutions worldwide. Previously, we have generated replication-competent recombinant (r)SARS-CoV-2 expressing fluorescent or luciferase reporter proteins to track viral infection in vitro and/or in vivo. However, these rSARS-CoV-2 are restricted to express only a single fluorescent or a luciferase reporter gene, limiting or preventing their use to specific in vitro assays and/or in vivo studies. To overcome this limitation, we have engineered a rSARS-CoV-2 expressing both fluorescent (mCherry) and luciferase (Nluc) genes and demonstrated its feasibility to study the biology of SARS-CoV-2 in vitro and/or in vivo, including the identification and characterization of neutralizing antibodies and/or antivirals. Using rodent models, we visualize SARS-CoV-2 infection and transmission through in vivo imaging systems (IVIS).

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-484172

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has led to a worldwide Coronavirus Disease 2019 (COVID-19) pandemic. Despite high efficacy of the authorized vaccines, protection against the surging variants of concern (VoC) was less robust. Live-attenuated vaccines (LAV) have been shown to elicit robust and long-term protection by induction of host innate and adaptive immune responses. We sought to develop a COVID-19 LAV by generating 3 double open reading frame (ORF)-deficient recombinant (r)SARS-CoV-2 simultaneously lacking two accessory open reading frame (ORF) proteins (ORF3a/ORF6, ORF3a/ORF7a, and ORF3a/ORF7b). Here, we report that these double ORF-deficient rSARS-CoV-2 have slower replication kinetics and reduced fitness in cultured cells as compared to their parental wild-type (WT) counterpart. Importantly, these double ORF-deficient rSARS-CoV-2 showed attenuation in both K18 hACE2 transgenic mice and golden Syrian hamsters. A single intranasal dose vaccination induced high levels of neutralizing antibodies against different SARS-CoV-2 VoC, and also activated viral component-specific T-cell responses. Notably, the double ORF-deficient rSARS-CoV-2 were able to protect, as determined by inhibition of viral replication, shedding, and transmission, against challenge with SARS-CoV-2. Collectively, our results demonstrate the feasibility to implement these double ORF-deficient rSARS-CoV-2 as safe, stable, immunogenic and protective LAV for the prevention of SARS-CoV-2 infection and associated COVID-19 disease.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-450214

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and has been responsible for the still ongoing coronavirus disease 2019 (COVID-19) pandemic. Prophylactic vaccines have been authorized by the United States (US) Food and Drug Administration (FDA) for the prevention of COVID-19. Identification of SARS-CoV-2 neutralizing antibodies (NAbs) is important to assess vaccine protection efficacy, including their ability to protect against emerging SARS- CoV-2 variants of concern (VoC). Here we report the generation and use of a recombinant (r)SARS-CoV-2 USA/WA1/2020 (WA-1) strain expressing Venus and a rSARS-CoV-2 expressing mCherry and containing mutations K417N, E484K, and N501Y found in the receptor binding domain (RBD) of the spike (S) glycoprotein of the South African (SA) B.1.351 (beta, {beta}) VoC, in bifluorescent-based assays to rapidly and accurately identify human monoclonal antibodies (hMAbs) able to neutralize both viral infections in vitro and in vivo. Importantly, our bifluorescent-based system accurately recapitulated findings observed using individual viruses. Moreover, fluorescent- expressing rSARS-CoV-2 and the parental wild-type (WT) rSARS-CoV-2 WA-1 had similar viral fitness in vitro, as well as similar virulence and pathogenicity in vivo in the K18 human angiotensin converting enzyme 2 (hACE2) transgenic mouse model of SARS-CoV-2 infection. We demonstrate that these new fluorescent-expressing rSARS- CoV-2 can be used in vitro and in vivo to easily identify hMAbs that simultaneously neutralize different SARS-CoV-2 strains, including VoC, for the rapid assessment of vaccine efficacy or the identification of prophylactic and/or therapeutic broadly NAbs for the treatment of SARS-CoV-2 infection.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-446942

RESUMO

Replication-competent recombinant viruses expressing reporter genes provide valuable tools to investigate viral infection. Low levels of reporter gene expressed from previous reporter-expressing rSARS-CoV-2 have jeopardized their use to monitor the dynamics of SARS-CoV-2 infection in vitro or in vivo. Here, we report an alternative strategy where reporter genes were placed upstream of the viral nucleocapsid gene followed by a 2A cleavage peptide. The higher levels of reporter expression using this strategy resulted in efficient visualization of rSARS-CoV-2 in infected cultured cells and K18 hACE2 transgenic mice. Importantly, real-time viral infection was readily tracked using a non-invasive in vivo imaging system and allowed us to rapidly identify antibodies which are able to neutralize SARS-CoV-2 infection in vivo. Notably, these reporter-expressing rSARS-CoV-2 retained wild-type virus like pathogenicity in vivo, supporting their use to investigate viral infection, dissemination, pathogenesis and therapeutic interventions for the treatment of SARS-CoV-2 in vivo.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-443693

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the third coronavirus in less than 20 years to spillover from an animal reservoir and cause severe disease in humans. High impact respiratory viruses such as pathogenic beta-coronaviruses and influenza viruses, as well as other emerging respiratory viruses, pose an ongoing global health threat to humans. There is a critical need for physiologically relevant, robust and ready to use, in vitro cellular assay platforms to rapidly model the infectivity of emerging respiratory viruses and discover and develop new antiviral treatments. Here, we validate in vitro human alveolar and tracheobronchial tissue equivalents and assess their usefulness as in vitro assay platforms in the context of live SARS-CoV-2 and influenza A virus infections. We establish the cellular complexity of two distinct tracheobronchial and alveolar epithelial air liquid interface (ALI) tissue models, describe SARS-CoV-2 and influenza virus infectivity rates and patterns in these ALI tissues, the viral-induced cytokine production as it relates to tissue-specific disease, and demonstrate the pharmacologically validity of these lung epithelium models as antiviral drug screening assay platforms.

6.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-442784

RESUMO

SARS-CoV-2 variants of concern (VoCs) are impacting responses to the COVID-19 pandemic. Here we present a comparison of the SARS-CoV-2 USA-WA1/2020 (WA-1) strain with B.1.1.7 and B.1.351 VoCs and identify significant differences in viral propagation in vitro and pathogenicity in vivo using K18-hACE2 transgenic mice. Passive immunization with plasma from an early pandemic SARS-CoV-2 patient resulted in significant differences in the outcome of VoC-infected mice. WA-1-infected mice were protected by plasma, B.1.1.7-infected mice were partially protected, and B.1.351-infected mice were not protected. Serological correlates of disease were different between VoC-infected mice, with B.1.351 triggering significantly altered cytokine profiles than other strains. In this study, we defined infectivity and immune responses triggered by VoCs and observed that early 2020 SARS-CoV-2 human immune plasma was insufficient to protect against challenge with B.1.1.7 and B.1.351 in the mouse model.

7.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-440654

RESUMO

Efforts are underway to develop countermeasures to prevent the environmental spread of COVID-19 pandemic caused by SARS-CoV-2. Physical decontamination methods like Ultraviolet radiation has shown to be promising. Here, we describe a novel device emitting ultraviolet C radiation (UVC), called NuvaWave, to rapidly and efficiently inactivate SARS-CoV-2. SARS-CoV-2 was dried on a chambered glass slides and introduced in a NuvaWave robotic testing unit. The robot simulated waving NuvaWave over the virus at a pre-determined UVC radiation dose of 1, 2, 4 and 8 seconds. Post-UVC exposure, virus was recovered and titered by plaque assay in Vero E6 cells. We observed that relative control (no UVC exposure), exposure of the virus to UVC for one or two seconds resulted in a >2.9 and 3.8 log10 reduction in viral titers, respectively. Exposure of the virus to UVC for four or eight seconds resulted in a reduction of greater than 4.7-log10 reduction in viral titers. The NuvaWave device inactivates SARS-CoV-2 on surfaces to below the limit of detection within one to four seconds of UVC irradiation. This device can be deployed to rapidly disinfect surfaces from SARS-CoV-2, and to assist in mitigating its spread in a variety of settings.

8.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-425974

RESUMO

The global deployment of an effective and safe vaccine is currently a public health priority to curtail the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we evaluated a Newcastle disease virus (NDV)-based intranasal vectored-vaccine in mice and hamsters for its immunogenicity, safety and protective efficacy in challenge studies with SARS-CoV-2. The recombinant (r)NDV-S vaccine expressing spike (S) protein of SARS-CoV-2 administrated via intranasal route in mice induced high levels of SARS-CoV-2-specific neutralizing immunoglobulin A (IgA) and IgG2a antibodies and T cell-mediated immunity. Hamsters vaccinated with two doses of vaccine showed complete protection from clinical disease including lung infection, inflammation, and pathological lesions after SARS-CoV-2 challenge. Importantly, a single or double dose of intranasal rNDV-S vaccine completely blocked SARS-CoV-2 shedding in nasal turbinate and lungs within 4 days of vaccine administration in hamsters. Taken together, intranasal administration of rNDV-S has the potential to control infection at the site of inoculation, which should prevent both the clinical disease and transmission to halt the spread of the COVID-19 pandemic.

9.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-210179

RESUMO

ABSTRACTVaccine and antiviral development against SARS-CoV-2 infection or COVID-19 disease currently lacks a validated small animal model. Here, we show that transgenic mice expressing human angiotensin converting enzyme 2 (hACE2) by the human cytokeratin 18 promoter (K18 hACE2) represent a susceptible rodent model. K18 hACE2-transgenic mice succumbed to SARS-CoV-2 infection by day 6, with virus detected in lung airway epithelium and brain. K18 ACE2-transgenic mice produced a modest TH1/2/17 cytokine storm in the lung and spleen that peaked by day 2, and an extended chemokine storm that was detected in both lungs and brain. This chemokine storm was also detected in the brain at day 4. K18 hACE2-transgenic mice are, therefore, highly susceptible to SARS-CoV-2 infection and represent a suitable animal model for the study of viral pathogenesis, and for identification and characterization of vaccines (prophylactic) and antivirals (therapeutics) for SARS-CoV-2 infection and associated severe COVID-19 disease.

10.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-136481

RESUMO

There are no known cures or vaccines for COVID-19, the defining pandemic of this era. Animal models are essential to fast track new interventions and nonhuman primate (NHP) models of other infectious diseases have proven extremely valuable. Here we compare SARS-CoV-2 infection in three species of experimentally infected NHPs (rhesus macaques, baboons, and marmosets). During the first 3 days, macaques developed clinical signatures of viral infection and systemic inflammation, coupled with early evidence of viral replication and mild-to-moderate interstitial and alveolar pneumonitis, as well as extra-pulmonary pathologies. Cone-beam CT scans showed evidence of moderate pneumonia, which progressed over 3 days. Longitudinal studies showed that while both young and old macaques developed early signs of COVID-19, both groups recovered within a two-week period. Recovery was characterized by low-levels of viral persistence in the lung, suggesting mechanisms by which individuals with compromised immune systems may be susceptible to prolonged and progressive COVID-19. The lung compartment contained a complex early inflammatory milieu with an influx of innate and adaptive immune cells, particularly interstitial macrophages, neutrophils and plasmacytoid dendritic cells, and a prominent Type I-interferon response. While macaques developed moderate disease, baboons exhibited prolonged shedding of virus and extensive pathology following infection; and marmosets demonstrated a milder form of infection. These results showcase in critical detail, the robust early cellular immune responses to SARS-CoV-2 infection, which are not sterilizing and likely impact development of antibody responses. Thus, various NHP genera recapitulate heterogeneous progression of COVID-19. Rhesus macaques and baboons develop different, quantifiable disease attributes making them immediately available essential models to test new vaccines and therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...