Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-472880

RESUMO

The pandemic caused by the new coronavirus SARS-CoV-2 has made evident the need for broad-spectrum, efficient antiviral treatments to combat emerging and re-emerging viruses. Plitidepsin is an antitumor agent of marine origin that has also shown a potent pre-clinical efficacy against SARS-CoV-2. Plitidepsin targets the host protein eEF1A (eukaryotic translation factor 1 alpha 1) and affects viral infection at an early, post-entry step. Because electron microscopy is a valuable tool to study virus-cell interactions and the mechanism of action of antiviral drugs, in this work we have used transmission electron microscopy (TEM) to evaluate the effects of plitidepsin in SARS-CoV-2 infection in cultured Vero E6 cells 24 and 48h post-infection. In the absence of plitidepsin, TEM morphological analysis showed double-membrane vesicles (DMVs), organelles that support coronavirus genome replication, single-membrane vesicles with viral particles, large vacuoles with groups of viruses and numerous extracellular virions attached to the plasma membrane. When treated with plitidepsin, no viral structures were found in SARS-CoV-2-infected Vero E6 cells. Immunogold detection of SARS-CoV-2 nucleocapsid (N) protein and double-stranded RNA (dsRNA) provided clear signals in cells infected in the absence of plitidepsin, but complete absence in cells infected and treated with plitidepsin. The present study shows that plitidepsin completely blocks the biogenesis of viral replication organelles and the morphogenesis of virus progeny. Electron microscopy morphological analysis coupled to immunogold labeling of SARS-CoV-2 products offers a unique approach to understand how antivirals such as plitidepsin work.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-443572

RESUMO

COVID-19 pandemic is not yet under control by vaccination, and effective antivirals are critical for preparedness. Here we report that macrophages and dendritic cells, key antigen presenting myeloid cells (APCs), are largely resistant to SARS-CoV-2 infection. APCs effectively captured viruses within cellular compartments that lead to antigen degradation. Macrophages sense SARS-CoV-2 and released higher levels of cytokines, including those related to cytokine storm in severe COVID-19. The sialic acid-binding Ig-like lectin 1 (Siglec-1/CD169) present on APCs, which interacts with sialylated gangliosides on membranes of retroviruses or filoviruses, also binds SARS-CoV-2 via GM1. Blockage of Siglec-1 receptors by monoclonal antibodies reduces SARS-CoV-2 uptake and transfer to susceptible target cells. APCs expressing Siglec-1 and carrying SARS-CoV-2 are found in pulmonary tissues of non-human primates. Single cell analysis reveals the in vivo induction of cytokines in those macrophages. Targeting Siglec-1 could offer cross-protection against SARS-CoV-2 and other enveloped viruses that exploit APCs for viral dissemination, including those yet to come in future outbreaks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...