Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21267593

RESUMO

Accumulating evidence shows a progressive decline in the efficacy of coronavirus disease 2019 (COVID-19) mRNA vaccines such as Pfizer-BioNTech (mRNA BNT161b2) and Moderna (mRNA-1273) in preventing breakthrough infections due to diminishing humoral immunity over time. Thus, this review characterizes the kinetics of anti-SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) antibodies after the second dose of a primary cycle of COVID-19 mRNA vaccination. A systematic search of literature was performed and a total of 18 studies (N=15,980) were identified and reviewed. The percent difference of means of reported antibody titers were then calculated to determine the decline in humoral response after the peak levels post-vaccination. Findings revealed that the peak humoral response was reached at 21-28 days after the second dose, after which serum levels progressively diminished at 4-6 months post-vaccination. Additionally, results showed that regardless of age, sex, serostatus and presence of comorbidities, longitudinal data reporting antibody measurement exhibited a decline of both anti-receptor binding domain (RBD) IgG and anti-spike IgG, ranging from 94-95% at 90-180 days and 55-85% at 140-160 days, respectively, after the peak antibody response. This suggests that the rate of antibody decline may be independent of patient-related factors and peak antibody titers but mainly a function of time and antibody class/molecular target. Hence, this study highlights the necessity of more efficient vaccination strategies to provide booster administration in attenuating the effects of waning immunity, especially in the appearance of new variants of concerns (VoCs).

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21264825

RESUMO

With the advent of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic, several vaccines have been developed to mitigate its spread and prevent adverse consequences of the Coronavirus Disease 2019 (COVID-19). The mRNA technology is an unprecedented vaccine, usually given in two doses to prevent SARS-CoV-2 infections. Despite effectiveness and safety, inter-individual immune response heterogeneity has been observed in recipients of mRNA-based vaccines. As a novel disease, the specific immune response mechanism responsible for warding off COVID-19 remains unclear at this point. However, significant evidence suggests that humoral response plays a crucial role in affording immunoprotection and preventing debilitating sequelae from COVID-19. As such this paper focused on the possible effects of age, sex, serostatus, and comorbidities on humoral response (i.e., total antibodies, IgG and/or IgA) of different populations post-mRNA-based Pfizer-BioNTech vaccination. A systematic search of literature was performed through PubMed, Cochrane CENTRAL, and Google Scholar. Studies were included if they reported humoral response to COVID-19 mRNA vaccines. A total of 32 studies was identified and reviewed, and the percent difference of means of reported antibody levels were calculated for comparison. Findings revealed that older individuals, the male sex, seronegativity, and those with more comorbidities mounted less humoral immune response. Given these findings, several recommendations were proposed regarding the current vaccination practices. These include giving additional doses of vaccination for immunocompromised and elderly populations. Another recommendation is conducting clinical trials in giving a combined scheme of mRNA vaccines, protein vaccines, and vector-based vaccines.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-434696

RESUMO

Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) is the viral pathogen responsible for the current coronavirus disease 2019 (COVID-19) pandemic. To date, it is estimated that over 113 million individuals have been infected with SARS-CoV-2 and over 2.5 million human deaths have been recorded worldwide. Currently, three vaccines have been approved by the Food and Drug Administration for emergency use only. However much of the pathogenesis observed during SARS-CoV-2 infection remains elusive. To gain insight into the contribution of individual accessory open reading frame (ORF) proteins in SARS-CoV-2 pathogenesis, we used our recently described reverse genetics system approach to successfully engineer recombinant (r)SARS-CoV-2, where we individually removed viral 3a, 6, 7a, 7b, and 8 ORF proteins, and characterized these recombinant viruses in vitro and in vivo. Our results indicate differences in plaque morphology, with ORF deficient ({Delta}ORF) viruses producing smaller plaques than those of the wild-type (rSARS-CoV-2/WT). However, growth kinetics of {Delta}ORF viruses were like those of rSARS-CoV-2/WT. Interestingly, infection of K18 human angiotensin converting enzyme 2 (hACE2) transgenic mice with the {Delta}ORF rSARS-CoV-2 identified ORF3a and ORF6 as the major contributors of viral pathogenesis, while {Delta}ORF7a, {Delta}ORF7b and {Delta}ORF8 rSARS-CoV-2 induced comparable pathology to rSARS-CoV-2/WT. This study demonstrates the robustness of our reverse genetics system to generate rSARS-CoV-2 and the major role for ORF3a and ORF6 in viral pathogenesis, providing important information for the generation of attenuated forms of SARS-CoV-2 for their implementation as live-attenuated vaccines for the treatment of SARS-CoV-2 infection and associated COVID-19. IMPORTANCEDespite great efforts put forward worldwide to combat the current coronavirus disease 2019 (COVID-19) pandemic, Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) continues to be a human health and socioeconomic threat. Insights into the pathogenesis of SARS-CoV-2 and contribution of viral proteins to disease outcome remains elusive. Our study aims to determine the contribution of SARS-CoV-2 accessory open reading frame (ORF) proteins in viral pathogenesis and disease outcome, and develop a synergistic platform combining our robust reverse genetics system to generate recombinant (r)SARS-CoV-2 with a validated rodent model of infection and disease. We demonstrated that SARS-CoV-2 ORF3a and ORF6 contribute to lung pathology and ultimately disease outcome in K18 hACE2 transgenic mice, while ORF7a, ORF7b, and ORF8 have little impact on disease outcome. Moreover, our combinatory platform serves as the foundation to generate attenuated forms of the virus to develop live-attenuated vaccines for the treatment of SARS-CoV-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...