Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22280263

RESUMO

Currently, the real-life impact of indoor climate, human behavior, ventilation and air filtration on respiratory pathogen detection and concentration are poorly understood. This hinders the interpretability of bioaerosol quantification in indoor air to surveil respiratory pathogens and transmission risk. We tested 341 indoor air samples from 21 community settings for 29 respiratory pathogens using qPCR. On average, 3.9 pathogens were positive per sample and 85.3% of samples tested positive for at least one. The number of detected pathogens and their respective concentrations varied significantly by pathogen, month, and age group in generalized linear (mixed) models and generalized estimating equations. High CO2 and low natural ventilation were independent risk factors for detection. CO2 concentration and air filtration were independently associated with their concentration. Occupancy, sampling time, mask wearing, vocalization, temperature, humidity and mechanical ventilation were not significant. Our results support the importance of ventilation and air filtration to reduce transmission.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22276091

RESUMO

The recent surge of hepatitis of unknown origin in children is hypothesized to be caused by adenovirus 41 and/or SARS-CoV-2 infections. A relatively high proportion of patients testing positive for these viruses concomitantly with the development of acute hepatitis supports this hypothesis. To formally incriminate these viral infections as causative agents of hepatitis, both a plausible physiopathological pathway and supporting epidemiological dynamics in the community need demonstration. In this study, we measured the level of circulation of adenovirus 40/41 and SARS-CoV-2 in the general population of the city of Leuven in Belgium using wastewater monitoring between December 2020 and May 2022 and indoor air sampling in day care centers between November 2021 and May 2022. We also retrospectively analyzed medical records of 12.672 children attending a tertiary hospital draining the same region between January 2019 and April 2022. Our results demonstrate a recent but modest increase in hepatitis of unknown origin concomitant with a surge of circulating adenovirus 41 and SARS-CoV-2 in the general population, including in children under 5.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22274823

RESUMO

To investigate whether wastewater surveillance can be used as an early warning system to detect a rise in SARS-CoV-2 positive cases, and to follow the circulation of specific variants of concern (VOC) in particular geographical areas, wastewater samples were collected from local neighborhood sewers and from a large regional wastewater treatment plant (WWTP) in the area of Leuven, Belgium. In two residential sampling sites, a rise in viral SARS-CoV-2 copies in wastewater preceded the peaks in positive cases. In the WWTP, peaks in the wastewater viral load were seen simultaneous with the waves op positive cases caused by the original Wuhan SARS-CoV-2 strain, the Alpha variant and the Delta variant. For the Omicron BA.1 variant associated wave, the viral load in wastewater increased to a lesser degree, and much later than the increase in positive cases, which could be attributed to a lower level of fecal excretion, as measured in hospitalized patients. Circulation of SARS-CoV-2 VOCs (Alpha, Delta and Omicron) could be detected based on the presence of specific key mutations. The shift in variants was noticeable in the wastewater, with key mutations of two different variants being present simultaneously during the transition period. We found that wastewater based surveillance is a sensitive tool to monitor SARS-CoV-2 circulation levels and VOCs in larger regions. This can prove to be highly valuable in times of reducing testing capacity. Differences in excretion levels of various SARS-CoV-2 variants should however be taken into account when using wastewater surveillance to monitor SARS-CoV-2 circulation levels in the population.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22272836

RESUMO

BackgroundStudent residences are at high risk for rapid COVID-transmission due to crowding and frequent close contact. AimWe aimed to investigate the overall secondary attack rates (SAR) in student residences and to discern risk factors for higher transmission in order to improve the evidence base for screening efforts and preventive measures. MethodsIn this retrospective case-ascertained study, we analysed data from student residences screened in Leuven, Belgium between October 2020 and May 2021, following detection of a COVID-19 case in the residence. We investigated the impact on the SAR in the living units screened of delay-time until follow-up, shared use of kitchen or sanitary facilities, presence of an external infection source and occurrence of social gatherings attended by the index case. ResultsWe included 200 residence units, representing 2326 screened residents, of which 68 units showed secondary transmission. The overall SAR was estimated at 0.0813 (95%CI 0.0705-0.0936). Both sharing sanitary facilities (p=0.04) and social gatherings attended by the index case (p=0.033) significantly impacted SAR, which increased from 3% to 13% when both risk factors were present compared to absent. ConclusionsWe identify risk factors which should be considered when selecting students for screening during an outbreak of COVID-19 in student residences to improve comprehensiveness and proportionality of testing. The identified risk factors improve the evidence base for preventive measures aimed at limiting social gatherings and improving ventilation of shared spaces in outbreak-prone settings. Lastly, they should be considered when designing student accommodation and other shared households.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-474275

RESUMO

We assessed the in vitro antiviral activity of remdesivir and its parent nucleoside GS-441524, molnupiravir and its parent nucleoside EIDD-1931 and the viral protease inhibitor nirmatrelvir against the ancestral SARS-CoV2 strain and the five variants of concern including Omicron. VeroE6-GFP cells were pre-treated overnight with serial dilutions of the compounds before infection. The GFP signal was determined by high-content imaging on day 4 post-infection. All molecules have equipotent antiviral activity against the ancestral virus and the VOCs Alpha, Beta, Gamma, Delta and Omicron. These findings are in line with the observation that the target proteins of these antivirals (respectively the viral RNA dependent RNA polymerase and the viral main protease Mpro) are highly conserved.

6.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-474086

RESUMO

The emergence of SARS-CoV-2 variants of concern (VoCs) has exacerbated the COVID-19 pandemic. End of November 2021, a new SARS-CoV-2 variant namely the omicron (B.1.1.529) emerged. Since this omicron variant is heavily mutated in the spike protein, WHO classified this variant as the 5th variant of concern (VoC). We previously demonstrated that the other SARS-CoV-2 VoCs replicate efficiently in Syrian hamsters, alike also the ancestral strains. We here wanted to explore the infectivity of the omicron variant in comparison to the ancestral D614G strain. Strikingly, in hamsters that had been infected with the omicron variant, a 3 log10 lower viral RNA load was detected in the lungs as compared to animals infected with D614G and no infectious virus was detectable in this organ. Moreover, histopathological examination of the lungs from omicron-infecetd hamsters revealed no signs of peri-bronchial inflammation or bronchopneumonia. Further experiments are needed to determine whether the omicron VoC replicates possibly more efficiently in the upper respiratory tract of hamsters than in their lungs.

7.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-472630

RESUMO

The SARS-CoV-2 Omicron variant was first identified in November 2021 in Botswana and South Africa1,2. It has in the meantime spread to many countries and is expected to rapidly become dominant worldwide. The lineage is characterized by the presence of about 32 mutations in the Spike, located mostly in the N-terminal domain (NTD) and the receptor binding domain (RBD), which may enhance viral fitness and allow antibody evasion. Here, we isolated an infectious Omicron virus in Belgium, from a traveller returning from Egypt. We examined its sensitivity to 9 monoclonal antibodies (mAbs) clinically approved or in development3, and to antibodies present in 90 sera from COVID-19 vaccine recipients or convalescent individuals. Omicron was totally or partially resistant to neutralization by all mAbs tested. Sera from Pfizer or AstraZeneca vaccine recipients, sampled 5 months after complete vaccination, barely inhibited Omicron. Sera from COVID-19 convalescent patients collected 6 or 12 months post symptoms displayed low or no neutralizing activity against Omicron. Administration of a booster Pfizer dose as well as vaccination of previously infected individuals generated an anti-Omicron neutralizing response, with titers 5 to 31 fold lower against Omicron than against Delta. Thus, Omicron escapes most therapeutic monoclonal antibodies and to a large extent vaccine-elicited antibodies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...