Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-505791

RESUMO

During the COVID-19 pandemic, large differences in susceptibility and mortality due to SARS-CoV-2 infection have been reported between populations in Europe and South Asia. While both host and environmental factors (including BCG vaccination) have been proposed to explain this, the potential biological substrate of these differences is unknown. We purified peripheral blood mononuclear cells from individuals living in India and the Netherlands at baseline and 10-12 weeks after BCG vaccination. We compared chromatin accessibility between the two populations at baseline, as well as gene transcription profiles and cytokine production capacities upon viral stimulation with influenza and SARS-CoV-2. The chromatin accessibility of genes important for adaptive immunity was higher in Indians compared to Europeans, while the latter had more accessible chromatin regions in genes of the innate immune system. At the transcriptional level, we observed that Indian volunteers displayed a more tolerant immune response to viral stimulation, in contrast to a more exaggerated response in Europeans. BCG vaccination strengthened the tolerance program in Indians, but not in Europeans. These differences may partly explain the different impact of COVID-19 on the two populations.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21263028

RESUMO

Non-specific protective effects of certain vaccines have been reported, and long-term boosting of innate immunity, termed trained immunity, has been proposed as one of the mechanisms mediating these effects. Several epidemiological studies suggested cross-protection between influenza vaccination and COVID-19. In a large academic Dutch hospital, we found that SARS-CoV-2 infection was less common among employees who had received a previous influenza vaccination: relative risk reductions of 37% and 49% were observed following influenza vaccination during the first and second COVID-19 waves, respectively. The quadrivalent inactivated influenza vaccine induced a trained immunity program that boosted innate immune responses against various viral stimuli and fine-tuned the anti-SARS-CoV-2 response, which may result in better protection against COVID-19. Influenza vaccination led to transcriptional reprogramming of monocytes and reduced systemic inflammation. These epidemiological and immunological data argue for potential benefits of influenza vaccination against COVID-19, and future randomized trials are warranted to test this possibility.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-442229

RESUMO

BackgroundMale sex and old age are risk factors for COVID-19 severity, but the underlying causes are unknown. A possible explanation for this might be the differences in immunological profiles in males and the elderly before the infection. Given the seasonal profile of COVID-19, the seasonal response against SARS-CoV-2 could also be different in these groups. MethodsThe abundance of circulating proteins and immune populations associated with severe COVID-19 was analyzed in 2 healthy cohorts. PBMCs of female, male, young, and old subjects in different seasons of the year were stimulated with heat-inactivated SARS-CoV-2. ResultSeveral T cell subsets, which are known to be depleted in severe COVID-19 patients, were intrinsically less abundant in men and older individuals. Plasma proteins increasing with disease severity, including HGF, IL-8, and MCP-1, were more abundant in the elderly and males. The elderly produced significantly more IL-1RA and had a dysregulated IFN{gamma} response with lower production in the summer compared with young individuals. ConclusionsThe immune characteristics of severe COVID-19, described by a differential abundance of immune cells and circulating inflammatory proteins, are intrinsically present in healthy men and the elderly. This might explain the susceptibility of men and the elderly to SARS-CoV-2 infection. SummaryImmunological profile of severe COVID-19, characterized by altered immune cell populations and inflammatory plasma proteins is intrinsically present in healthy men and the elderly. Different age and sex groups show distinct seasonal responses to SARS-CoV-2.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21256520

RESUMO

The mRNA-based BNT162b2 vaccine from Pfizer/BioNTech was the first registered COVID-19 vaccine and has been shown to be up to 95% effective in preventing SARS-CoV-2 infections. Little is known about the broad effects of the new class of mRNA vaccines, especially whether they have combined effects on innate and adaptive immune responses. Here we confirmed that BNT162b2 vaccination of healthy individuals induced effective humoral and cellular immunity against several SARS-CoV-2 variants. Interestingly, however, the BNT162b2 vaccine also modulated the production of inflammatory cytokines by innate immune cells upon stimulation with both specific (SARS-CoV-2) and non-specific (viral, fungal and bacterial) stimuli. The response of innate immune cells to TLR4 and TLR7/8 ligands was lower after BNT162b2 vaccination, while fungi-induced cytokine responses were stronger. In conclusion, the mRNA BNT162b2 vaccine induces complex functional reprogramming of innate immune responses, which should be considered in the development and use of this new class of vaccines.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20212498

RESUMO

Every year, influenza causes 290.000 to 650.000 deaths worldwide and vaccination is encouraged to prevent infection in high-risk individuals. Interestingly, cross-protective effects of vaccination against heterologous infections have been reported, and long-term boosting of innate immunity (also termed trained immunity) has been proposed as the underlying mechanism. Several epidemiological studies also suggested cross-protection between influenza vaccination and COVID-19 during the current pandemic. However, the mechanism behind such an effect is unknown. Using an established in-vitro model of trained immunity, we demonstrate that the quadrivalent inactivated influenza vaccine used in the Netherlands in the 2019-2020 influenza season can induce a trained immunity response, including an improvement of cytokine responses after stimulation of human immune cells with SARS-CoV-2. In addition, we found that SARS-CoV-2 infection was less common among Dutch hospital employees who had received influenza vaccination during the 2019/2020 winter season (RR = 0,61 (95% CI, 0.4585 - 0.8195, P = 0.001). In conclusion, a quadrivalent inactivated influenza vaccine can induce trained immunity responses against SARS-CoV-2, which may result in relative protection against COVID-19. These data, coupled with similar recent independent reports, argue for a beneficial effect of influenza vaccination against influenza as well as COVID-19, and suggests its effective deployment in the 2020-2021 influenza season to protect against both infections.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20060905

RESUMO

O_LIWe use a data quality model to demonstrate that BCG vaccination is correlated with protection from death from COVID19 C_LIO_LIFrom a mechanistic perspective, BCG is well described to elicit its protective non-specific effects through the process of trained immunity. C_LIO_LITherapeutically enhancing trained immunity may therefore be an important mechanism in protection from the lethal effects of COVID19 C_LI

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...