Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Expert Syst Appl ; 185: 115681, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34366577

RESUMO

The current COVID-19 pandemic, that has caused more than 100 million cases as well as more than two million deaths worldwide, demands the development of fast and accurate diagnostic methods despite the lack of available samples. This disease mainly affects the respiratory system of the patients and can lead to pneumonia and to severe cases of acute respiratory syndrome that result in the formation of several pathological structures in the lungs. These pathological structures can be explored taking advantage of chest X-ray imaging. As a recommendation for the health services, portable chest X-ray devices should be used instead of conventional fixed machinery, in order to prevent the spread of the pathogen. However, portable devices present several problems (specially those related with capture quality). Moreover, the subjectivity and the fatigue of the clinicians lead to a very difficult diagnostic process. To overcome that, computer-aided methodologies can be very useful even taking into account the lack of available samples that the COVID-19 affectation shows. In this work, we propose an improvement in the performance of COVID-19 screening, taking advantage of several cycle generative adversarial networks to generate useful and relevant synthetic images to solve the lack of COVID-19 samples, in the context of poor quality and low detail datasets obtained from portable devices. For validating this proposal for improved COVID-19 screening, several experiments were conducted. The results demonstrate that this data augmentation strategy improves the performance of a previous COVID-19 screening proposal, achieving an accuracy of 98.61% when distinguishing among NON-COVID-19 (i.e. normal control samples and samples with pathologies others than COVID-19) and genuine COVID-19 samples. It is remarkable that this methodology can be extrapolated to other pulmonary pathologies and even other medical imaging domains to overcome the data scarcity.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20134593

RESUMO

The recent human coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been declared as a global pandemic on 11 March 2020 by the World Health Organization. Given the effects of COVID-19 in pulmonary tissues, chest radiography imaging plays an important role for the screening, early detection and monitoring of the suspected individuals. Hence, as the pandemic of COVID-19 progresses, there will be a greater reliance on the use of portable equipment for the acquisition of chest X-Ray images due to its accessibility, widespread availability and benefits regarding to infection control issues, minimizing the risk of cross contamination. This work presents novel fully automatic approaches specifically tailored for the classification of chest X-Ray images acquired by portable equipment into 3 different clinical categories: normal, pathological and COVID-19. For this purpose, two complementary deep learning approaches based on a densely convolutional network architecture are herein presented. The joint response of both approaches allows to enhance the differentiation between patients infected with COVID-19, patients with other diseases that manifest characteristics similar to COVID-19 and normal cases. The proposed approaches were validated over a dataset provided by the Radiology Service of the Complexo Hospitalario Universitario A Coruna (CHUAC) specifically retrieved for this research. Despite the poor quality of chest X-Ray images that is inherent to the nature of the portable equipment, the proposed approaches provided satisfactory results, allowing a reliable analysis of portable radiographs, to support the clinical decision-making process.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20087254

RESUMO

Covid-19 is a new infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Given the seriousness of the situation, the World Health Organization declared a global pandemic as the Covid-19 rapidly around the world. Among its applications, chest X-ray images are frequently used for an early diagnostic/screening of Covid-19 disease, given the frequent pulmonary impact in the patients, critical issue to prevent further complications caused by this highly infectious disease. In this work, we propose complementary fully automatic approaches for the classification of chest X-ray images under the analysis of 3 different categories: Covid-19, pneumonia and healthy cases. Given the similarity between the pathological impact in the lungs between Covid-19 and pneumonia, mainly during the initial stages of both lung diseases, we performed an exhaustive study of differentiation considering different pathological scenarios. To face these classification tasks, we exploited and adapted to this topic a densely convolutional network architecture, which connects each layer to every other layer in a feed-forward fashion. To validate the designed approaches, several representative experiments were performed using images retrieved from different public chest X-ray images datasets. overall, satisfactory results were obtained from the designed experiments, facilitating the doctors work and allowing better an early diagnostic/screening and treatment of this relevant pandemic pathology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...